subhankarfynd's picture
Create handler.py
a9e85ee
import time
import bitsandbytes as bnb
import torch
import transformers
from datasets import load_dataset
from typing import Dict, List, Any
from peft import (
LoraConfig,
PeftConfig,
PeftModel,
get_peft_model,
prepare_model_for_kbit_training,
)
from transformers import (
AutoConfig,
LlamaTokenizer,
LlamaForCausalLM,
#AutoModelForCausalLM,
#AutoTokenizer,
BitsAndBytesConfig,
)
import json
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
from huggingface_hub import login
access_token_read = "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"
login(token = access_token_read)
class EndpointHandler:
def __init__(self, path=''):
PEFT_MODEL = path
config = PeftConfig.from_pretrained(PEFT_MODEL)
self.model = LlamaForCausalLM.from_pretrained(
config.base_model_name_or_path,
return_dict=True,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True,
)
self.tokenizer = LlamaTokenizer.from_pretrained(config.base_model_name_or_path)
self.tokenizer.pad_token_id = (0)
self.tokenizer.padding_side = "left"
self.model = PeftModel.from_pretrained(self.model, PEFT_MODEL)
self.generation_config = self.model.generation_config
self.generation_config.max_new_tokens = 500
self.generation_config.pad_token_id = self.tokenizer.eos_token_id
self.generation_config.eos_token_id = self.tokenizer.eos_token_id
def __call__(self, data: Dict[str, Any]):
prompt = data.pop("inputs", data)
DEVICE = "cuda:0"
input_message = f"""[INST]You are Copilot, a chat assistant that helps users choose products from JioMart, JioFiber, JioCinema, Tira Beauty, netmeds and milkbasket[/INST]\nUser: {prompt}\nAssistant: """.strip()
encoding = self.tokenizer(input_message, return_tensors="pt").to(DEVICE)
with torch.inference_mode():
outputs = self.model.generate(
input_ids=encoding.input_ids,
attention_mask=encoding.attention_mask,
generation_config=self.generation_config
)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_message):]