YangXiao-nlp
commited on
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# LIMO: Less Is More for Reasoning π
|
2 |
+
|
3 |
+
|
4 |
+
## π Table of Contents
|
5 |
+
- [Overview](#overview)
|
6 |
+
- [Key Results](#key-results)
|
7 |
+
- [Model Zoo](#model-zoo)
|
8 |
+
- [Datasets](#datasets)
|
9 |
+
- [Quick Start](#quick-start)
|
10 |
+
- [Training](#training)
|
11 |
+
- [Evaluation](#evaluation)
|
12 |
+
- [Citation](#citation)
|
13 |
+
|
14 |
+
|
15 |
+
## Overview
|
16 |
+
|
17 |
+
LIMO challenges the conventional wisdom in mathematical reasoning by demonstrating that models can achieve superior performance with significantly less but higher quality training data. Our approach:
|
18 |
+
|
19 |
+
- π― Achieves SOTA with only 817 carefully curated training samples
|
20 |
+
- π Shows strong generalization across diverse problem types
|
21 |
+
- π¬ Provides comprehensive evaluation on 10 benchmarks
|
22 |
+
- π Releases high-quality datasets and evaluation tools
|
23 |
+
|
24 |
+
## Key Results
|
25 |
+
|
26 |
+
| Model | AIME24 | MATH500 | Training Samples |
|
27 |
+
|-------|--------|---------|-----------------|
|
28 |
+
| LIMO (Ours) | **57.1%** | **94.8%** | 817 |
|
29 |
+
| Previous SOTA | 6.5% | 59.2% | 100k+ |
|
30 |
+
|
31 |
+
<details>
|
32 |
+
<summary>Click to see more detailed results</summary>
|
33 |
+
|
34 |
+
| Benchmark | LIMO | Previous SOTA | Improvement |
|
35 |
+
|-----------|------|--------------------------|-------------|
|
36 |
+
| AIME24 | **57.1%** | 6.5% | +50.6% |
|
37 |
+
| MATH500 | **94.8%** | 59.2% | +35.6% |
|
38 |
+
| AMC23 | **92.0%** | 40.6% | +51.4% |
|
39 |
+
| OlympiadBench | **66.8%** | 36.7% | +30.1% |
|
40 |
+
| CHMath | **75.4%** | 11.2% | +64.2% |
|
41 |
+
| Gaokao | **81.0%** | 49.4% | +31.6% |
|
42 |
+
| Kaoyan | **73.4%** | 32.7% | +40.7% |
|
43 |
+
| GradeSchool | **76.2%** | 36.2% | +40.0% |
|
44 |
+
| Minerva | 44.9% | **47.1%** | -2.2% |
|
45 |
+
| GPQA | 66.7% | **73.3%** | -6.6% |
|
46 |
+
|
47 |
+
</details>
|
48 |
+
|
49 |
+
## Model Zoo
|
50 |
+
|
51 |
+
Our LIMO model is available on Hugging Face π€:
|
52 |
+
|
53 |
+
| Model | Backbone | Size | Link |
|
54 |
+
|-------|------|------|------|
|
55 |
+
| LIMO | [Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) | 32B | [π€](https://huggingface.co/GAIR/LIMO) |
|
56 |
+
|
57 |
+
|
58 |
+
## Datasets
|
59 |
+
|
60 |
+
We release our datasets through Hugging Face π€:
|
61 |
+
|
62 |
+
| Dataset | Description | Size | Link |
|
63 |
+
|---------|-------------|------|------|
|
64 |
+
| LIMO | Training set used to train LIMO model | 817 | [π€](https://huggingface.co/datasets/GAIR/LIMO) |
|
65 |
+
|
66 |
+
Note: We are gradually releasing additional datasets mentioned in our paper, including those used for comparative experiments, to facilitate reproducibility and further analysis by the research community. Stay tuned!
|
67 |
+
|
68 |
+
## Quick Start
|
69 |
+
|
70 |
+
Our model is fine-tuned on [Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) and is compatible with most mainstream frameworks like [HF Transformers](https://github.com/huggingface/transformers), [VLLM](https://github.com/vllm-project/vllm), [TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM) and etc.
|
71 |
+
|
72 |
+
|
73 |
+
<details>
|
74 |
+
<summary>Start with HF Transformers</summary>
|
75 |
+
|
76 |
+
```bash
|
77 |
+
# Install required packages
|
78 |
+
pip install transformers
|
79 |
+
```
|
80 |
+
|
81 |
+
```python
|
82 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
83 |
+
import torch
|
84 |
+
|
85 |
+
# Initialize model and tokenizer
|
86 |
+
model = AutoModelForCausalLM.from_pretrained(
|
87 |
+
"GAIR/LIMO",
|
88 |
+
torch_dtype="auto",
|
89 |
+
trust_remote_code=True,
|
90 |
+
device_map="auto"
|
91 |
+
)
|
92 |
+
tokenizer = AutoTokenizer.from_pretrained("GAIR/LIMO", trust_remote_code=True)
|
93 |
+
|
94 |
+
# Prepare input messages (We use the following template and system prompt during training and inference)
|
95 |
+
messages = [
|
96 |
+
{"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{}."},
|
97 |
+
{"role": "user", "content": "What is the result of 1+1?"}
|
98 |
+
]
|
99 |
+
|
100 |
+
# Format input using chat template
|
101 |
+
text = tokenizer.apply_chat_template(
|
102 |
+
messages,
|
103 |
+
tokenize=False,
|
104 |
+
add_generation_prompt=True
|
105 |
+
)
|
106 |
+
|
107 |
+
# Tokenize input
|
108 |
+
inputs = tokenizer(text, return_tensors="pt").to(model.device)
|
109 |
+
|
110 |
+
# Generate response
|
111 |
+
outputs = model.generate(
|
112 |
+
**inputs,
|
113 |
+
max_new_tokens=32768,
|
114 |
+
temperature=0.7,
|
115 |
+
top_p=0.95,
|
116 |
+
do_sample=True
|
117 |
+
)
|
118 |
+
|
119 |
+
# Decode and print response
|
120 |
+
response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
|
121 |
+
print(response)
|
122 |
+
```
|
123 |
+
|
124 |
+
</details>
|
125 |
+
|
126 |
+
<details>
|
127 |
+
<summary>Start with VLLM</summary>
|
128 |
+
|
129 |
+
```bash
|
130 |
+
# Install required packages
|
131 |
+
pip install vllm
|
132 |
+
```
|
133 |
+
|
134 |
+
|
135 |
+
```python
|
136 |
+
from vllm import LLM, SamplingParams
|
137 |
+
from transformers import AutoTokenizer
|
138 |
+
|
139 |
+
# Initialize the model
|
140 |
+
llm = LLM(
|
141 |
+
model="GAIR/LIMO",
|
142 |
+
tensor_parallel_size=4, # adjust based on available GPUs
|
143 |
+
trust_remote_code=True,
|
144 |
+
swap_space=60,
|
145 |
+
gpu_memory_utilization=0.96,
|
146 |
+
)
|
147 |
+
|
148 |
+
# Prepare input messages (We use the following template and system prompt during training and inference)
|
149 |
+
messages = [
|
150 |
+
{"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{}."},
|
151 |
+
{"role": "user", "content": "What is the result of 1+1?"}
|
152 |
+
]
|
153 |
+
|
154 |
+
# Setup tokenizer
|
155 |
+
tokenizer = AutoTokenizer.from_pretrained("GAIR/LIMO", trust_remote_code=True)
|
156 |
+
text = tokenizer.apply_chat_template(
|
157 |
+
messages,
|
158 |
+
tokenize=False,
|
159 |
+
add_generation_prompt=True
|
160 |
+
)
|
161 |
+
|
162 |
+
# Configure generation parameters
|
163 |
+
sampling_params = SamplingParams(
|
164 |
+
temperature=0.7,
|
165 |
+
max_tokens=32768,
|
166 |
+
top_p=0.95,
|
167 |
+
)
|
168 |
+
|
169 |
+
# Generate response
|
170 |
+
output = llm.generate(text, sampling_params)
|
171 |
+
print(output[0].outputs[0].text)
|
172 |
+
```
|
173 |
+
|
174 |
+
</details>
|
175 |
+
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
## License
|
180 |
+
|
181 |
+
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|
182 |
+
|
183 |
+
|
184 |
+
## Citation
|
185 |
+
|
186 |
+
```bibtex
|
187 |
+
@misc{ye2025limoreasoning,
|
188 |
+
title={LIMO: Less is More for Reasoning},
|
189 |
+
author={Yixin Ye and Zhen Huang and Yang Xiao and Ethan Chern and Shijie Xia and Pengfei Liu},
|
190 |
+
year={2025},
|
191 |
+
eprint={2502.03387},
|
192 |
+
archivePrefix={arXiv},
|
193 |
+
primaryClass={cs.CL},
|
194 |
+
url={https://arxiv.org/abs/2502.03387},
|
195 |
+
}
|
196 |
+
```
|