Create gradio.py
Browse files
gradio.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spacy
|
3 |
+
import networkx as nx
|
4 |
+
|
5 |
+
# Load your NLP model and graphs
|
6 |
+
nlp = spacy.load("en_core_web_sm")
|
7 |
+
G_unreliable = nx.read_graphml('knowledge_graph.graphml')
|
8 |
+
G_reliable = nx.read_graphml('knowledge_graph_G1.graphml')
|
9 |
+
|
10 |
+
def analyze_misinformation(sentence):
|
11 |
+
misinformation, corrections = analyze_misinformation(sentence, nlp, G_unreliable, G_reliable)
|
12 |
+
return {"Misinformation": misinformation, "Corrections": corrections if corrections else "No corrections needed"}
|
13 |
+
|
14 |
+
interface = gr.Interface(fn=analyze_misinformation,
|
15 |
+
inputs="text",
|
16 |
+
outputs=["json"],
|
17 |
+
title="Misinformation Detection Demo",
|
18 |
+
description="Detects whether a sentence is likely to contain misinformation.")
|
19 |
+
|
20 |
+
if __name__ == "__main__":
|
21 |
+
interface.launch()
|