import gradio as gr import spacy import networkx as nx # Load your NLP model and graphs nlp = spacy.load("en_core_web_sm") G_unreliable = nx.read_graphml('knowledge_graph.graphml') G_reliable = nx.read_graphml('knowledge_graph_G1.graphml') def analyze_misinformation(sentence): misinformation, corrections = analyze_misinformation(sentence, nlp, G_unreliable, G_reliable) return {"Misinformation": misinformation, "Corrections": corrections if corrections else "No corrections needed"} interface = gr.Interface(fn=analyze_misinformation, inputs="text", outputs=["json"], title="Misinformation Detection Demo", description="Detects whether a sentence is likely to contain misinformation.") if __name__ == "__main__": interface.launch()