File size: 11,994 Bytes
8ce7de5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
from itertools import chain
from typing import List, Optional, Tuple

import numpy as np
from transformers import Pipeline


class RefSegPipeline(Pipeline):

    labels = [
        'publisher', 'source', 'url', 'other', 'author', 'editor', 'lpage',
        'volume', 'year', 'issue', 'title', 'fpage', 'edition'
    ]
    iob_labels = list(chain.from_iterable([['B-' + x, 'I-' + x] for x in labels])) + ['O']
    id2seg = {k: v for k, v in enumerate(iob_labels)}
    id2ref = {k: v for k, v in enumerate(['B-ref', 'I-ref', ])}
    is_split_into_words = False

    def _sanitize_parameters(self, **kwargs):
        if "id2seg" in kwargs:
            self.id2seg = kwargs["id2seg"]
        if "id2ref" in kwargs:
            self.id2ref = kwargs["id2ref"]

        return {}, {}, {}

    def preprocess(self, sentence, offset_mapping=None, split_into_words=True):
        tokens = sentence
        if split_into_words:
            split_sentence = self.tokenizer.pre_tokenizer.pre_tokenize_str(sentence)
            tokens, offsets = zip(*split_sentence)
        model_inputs = self.tokenizer(
            tokens,
            return_offsets_mapping=True,
            padding='max_length',
            truncation=True,
            max_length=512,
            return_tensors="pt",
            return_special_tokens_mask=True,
            return_overflowing_tokens=True,
            is_split_into_words=split_into_words,
            stride=32
        )

        if offset_mapping:
            model_inputs["offset_mapping"] = offset_mapping

        model_inputs["sentence"] = sentence
        model_inputs["token_offsets"] = offsets

        return model_inputs


    def _forward(self, model_inputs):
        special_tokens_mask = model_inputs.pop("special_tokens_mask")
        offset_mapping = model_inputs.pop("offset_mapping", None)
        sentence = model_inputs.pop("sentence")
        token_offsets = model_inputs.pop("token_offsets")
        overflow_mapping = model_inputs.pop("overflow_to_sample_mapping")
        if self.framework == "tf":
            logits = self.model(model_inputs.data)[0]
        else:
            logits = self.model(**model_inputs)[0]

        return {
            "logits": logits,
            "special_tokens_mask": special_tokens_mask,
            "offset_mapping": offset_mapping,
            "overflow_mapping": overflow_mapping,
            "sentence": sentence,
            "token_offsets": token_offsets,
            **model_inputs,
        }

    def postprocess(self, model_outputs):
        # if ignore_labels is None:
        ignore_labels = ["O"]
        logits_seg = model_outputs["logits"][0].numpy()
        logits_ref = model_outputs["logits"][1].numpy()
        sentence = model_outputs["sentence"]
        token_offsets = model_outputs["token_offsets"]
        input_ids = model_outputs["input_ids"]
        special_tokens_mask = model_outputs["special_tokens_mask"]

        offset_mapping = model_outputs["offset_mapping"] if model_outputs["offset_mapping"] is not None else None

        maxes_seg = np.max(logits_seg, axis=-1, keepdims=True)
        shifted_exp_seg = np.exp(logits_seg - maxes_seg)
        scores_seg = shifted_exp_seg / shifted_exp_seg.sum(axis=-1, keepdims=True)

        maxes_ref = np.max(logits_ref, axis=-1, keepdims=True)
        shifted_exp_ref = np.exp(logits_ref - maxes_ref)
        scores_ref = shifted_exp_ref / shifted_exp_ref.sum(axis=-1, keepdims=True)

        pre_entities = self.gather_pre_entities(
            input_ids, scores_seg, scores_ref, offset_mapping, special_tokens_mask
        )
        grouped_entities = self.aggregate(pre_entities, token_offsets, sentence)

        cleaned_groups = []
        for group in grouped_entities:
            start, end = None, None
            entities = []
            group_dict = {}
            for entity in group:
                if entity.get("entity_group", None) in ignore_labels:
                    continue
                if start is None or end is None:
                    start = entity["start"]
                    end = entity["end"]
                else:
                    start = min(start, entity["start"])
                    end = max(end, entity["end"])
                entities.append(entity)
            if entities:
                group_dict["reference_raw"] = sentence[start:end]
                group_dict["entities"] = entities
                cleaned_groups.append(group_dict)

            # entities = [
            #     entity
            #     for entity in group
            #     if entity.get("entity_group", None) not in ignore_labels
            # ]
            # if entities:
            #     cleaned_groups.append(entities)
        return {
            "number_of_references": len(cleaned_groups),
            "references": cleaned_groups,
        }

    def gather_pre_entities(
            self,
            input_ids: np.ndarray,
            scores_seg: np.ndarray,
            scores_ref: np.ndarray,
            offset_mappings: Optional[List[Tuple[int, int]]],
            special_tokens_masks: np.ndarray,
    ) -> List[dict]:
        """Fuse various numpy arrays into dicts with all the information needed for aggregation"""
        pre_entities = []
        for idx_list, (input_id, offset_mapping, special_tokens_mask, s_seg, s_ref) in enumerate(
                zip(input_ids, offset_mappings, special_tokens_masks, scores_seg, scores_ref)):
            for idx, iid in enumerate(input_id):
                skip = False
                if idx_list != 0 and idx <= 32:
                    skip = True

                if special_tokens_mask[idx]:
                    continue

                word = self.tokenizer.convert_ids_to_tokens(int(input_id[idx]))
                if offset_mapping is not None:
                    start_ind, end_ind = offset_mapping[idx]
                    if not isinstance(start_ind, int):
                        if self.framework == "pt":
                            start_ind = start_ind.item()
                            end_ind = end_ind.item()

                    is_subword = not word.startswith('\u2581')

                    if int(input_id[idx]) == self.tokenizer.unk_token_id:
                        is_subword = False
                else:
                    start_ind = None
                    end_ind = None
                    is_subword = False

                pre_entity = {
                    "word": word,
                    "scores_seg": s_seg[idx],
                    "scores_ref": s_ref[idx],
                    "start": start_ind,
                    "end": end_ind,
                    "index": idx,
                    "is_subword": is_subword,
                    "is_stride": skip,
                }
                pre_entities.append(pre_entity)
        return pre_entities

    def aggregate(self, pre_entities: List[dict], token_offsets: List[tuple], sentence: str) -> List[dict]:
        entities = self.aggregate_words(pre_entities, token_offsets)

        return self.group_entities(entities, sentence)

    def aggregate_word(self, entities: List[dict], token_offset: tuple) -> dict:
        word = self.tokenizer.convert_tokens_to_string([entity["word"] for entity in entities])
        scores_seg = entities[0]["scores_seg"]
        idx_seg = scores_seg.argmax()
        score_seg = scores_seg[idx_seg]
        entity_seg = self.id2seg[idx_seg]

        scores_ref = np.stack([entity["scores_ref"] for entity in entities])
        indices_ref = scores_ref.argmax(axis=1)
        idx_ref = 1 if all(indices_ref) else 0
        entity_ref = self.id2ref[idx_ref]

        new_entity = {
            "entity_seg": entity_seg,
            "score_seg": score_seg,
            "entity_ref": entity_ref,
            "word": word,
            "start": entities[0]["start"] + token_offset[0],
            "end": entities[-1]["end"] + token_offset[0],
        }
        return new_entity

    def aggregate_words(self, entities: List[dict], token_offsets: List[tuple]) -> List[dict]:
        """
        Override tokens from a given word that disagree to force agreement on word boundaries.
        Example: micro|soft| com|pany| B-ENT I-NAME I-ENT I-ENT will be rewritten with first strategy as microsoft|
        company| B-ENT I-ENT
        """
        word_entities = []
        word_group = None
        idx = 0
        for entity in entities:
            if entity["is_stride"]:
                continue
            if word_group is None:
                word_group = [entity]
            elif entity["is_subword"]:
                word_group.append(entity)
            else:
                word_entities.append(self.aggregate_word(word_group, token_offsets[idx]))
                word_group = [entity]
                idx += 1
        word_entities.append(self.aggregate_word(word_group, token_offsets[idx]))
        idx += 1
        return word_entities

    def group_entities(self, entities: List[dict], sentence: str) -> List[dict]:
        """
        Find and group together the adjacent tokens with the same entity predicted.
        Args:
            entities (`dict`): The entities predicted by the pipeline.
        """
        entity_chunk = []
        entity_chunk_disagg = []

        for entity in entities:
            if not entity_chunk_disagg:
                entity_chunk_disagg.append(entity)
                continue

            bi_ref, tag_ref = self.get_tag(entity["entity_ref"])
            last_bi_ref, last_tag_ref = self.get_tag(entity_chunk_disagg[-1]["entity_ref"])

            if tag_ref == last_tag_ref and bi_ref != "B":
                entity_chunk_disagg.append(entity)
            else:
                entity_chunk.append(entity_chunk_disagg)
                entity_chunk_disagg = [entity]

        if entity_chunk_disagg:
            entity_chunk.append(entity_chunk_disagg)

        entity_chunks_all = []

        for chunk in entity_chunk:

            entity_groups = []
            entity_group_disagg = []

            for entity in chunk:
                if not entity_group_disagg:
                    entity_group_disagg.append(entity)
                    continue

                bi_seg, tag_seg = self.get_tag(entity["entity_seg"])
                last_bi_seg, last_tag_seg = self.get_tag(entity_group_disagg[-1]["entity_seg"])

                if tag_seg == last_tag_seg and bi_seg != "B":
                    entity_group_disagg.append(entity)
                else:
                    entity_groups.append(self.group_sub_entities(entity_group_disagg, sentence))
                    entity_group_disagg = [entity]

            if entity_group_disagg:
                entity_groups.append(self.group_sub_entities(entity_group_disagg, sentence))

            entity_chunks_all.append(entity_groups)

        return entity_chunks_all

    def group_sub_entities(self, entities: List[dict], sentence: str) -> dict:
        """
        Group together the adjacent tokens with the same entity predicted.
        Args:
            entities (`dict`): The entities predicted by the pipeline.
        """
        entity = entities[0]["entity_seg"].split("-")[-1]
        scores = np.nanmean([entity["score_seg"] for entity in entities])
        start = min([entity["start"] for entity in entities])
        end = max([entity["end"] for entity in entities])
        word = sentence[start:end]



        entity_group = {
            "entity_group": entity,
            "score": np.mean(scores),
            "word": word,
            "start": entities[0]["start"],
            "end": entities[-1]["end"],
        }
        return entity_group

    def get_tag(self, entity_name: str) -> Tuple[str, str]:
        if entity_name.startswith("B-"):
            bi = "B"
            tag = entity_name[2:]
        elif entity_name.startswith("I-"):
            bi = "I"
            tag = entity_name[2:]
        else:
            bi = "I"
            tag = entity_name
        return bi, tag