ReferenceParserModel / ref_seg.py
MrPotato's picture
commit files to HF hub
8ce7de5
raw
history blame
12 kB
from itertools import chain
from typing import List, Optional, Tuple
import numpy as np
from transformers import Pipeline
class RefSegPipeline(Pipeline):
labels = [
'publisher', 'source', 'url', 'other', 'author', 'editor', 'lpage',
'volume', 'year', 'issue', 'title', 'fpage', 'edition'
]
iob_labels = list(chain.from_iterable([['B-' + x, 'I-' + x] for x in labels])) + ['O']
id2seg = {k: v for k, v in enumerate(iob_labels)}
id2ref = {k: v for k, v in enumerate(['B-ref', 'I-ref', ])}
is_split_into_words = False
def _sanitize_parameters(self, **kwargs):
if "id2seg" in kwargs:
self.id2seg = kwargs["id2seg"]
if "id2ref" in kwargs:
self.id2ref = kwargs["id2ref"]
return {}, {}, {}
def preprocess(self, sentence, offset_mapping=None, split_into_words=True):
tokens = sentence
if split_into_words:
split_sentence = self.tokenizer.pre_tokenizer.pre_tokenize_str(sentence)
tokens, offsets = zip(*split_sentence)
model_inputs = self.tokenizer(
tokens,
return_offsets_mapping=True,
padding='max_length',
truncation=True,
max_length=512,
return_tensors="pt",
return_special_tokens_mask=True,
return_overflowing_tokens=True,
is_split_into_words=split_into_words,
stride=32
)
if offset_mapping:
model_inputs["offset_mapping"] = offset_mapping
model_inputs["sentence"] = sentence
model_inputs["token_offsets"] = offsets
return model_inputs
def _forward(self, model_inputs):
special_tokens_mask = model_inputs.pop("special_tokens_mask")
offset_mapping = model_inputs.pop("offset_mapping", None)
sentence = model_inputs.pop("sentence")
token_offsets = model_inputs.pop("token_offsets")
overflow_mapping = model_inputs.pop("overflow_to_sample_mapping")
if self.framework == "tf":
logits = self.model(model_inputs.data)[0]
else:
logits = self.model(**model_inputs)[0]
return {
"logits": logits,
"special_tokens_mask": special_tokens_mask,
"offset_mapping": offset_mapping,
"overflow_mapping": overflow_mapping,
"sentence": sentence,
"token_offsets": token_offsets,
**model_inputs,
}
def postprocess(self, model_outputs):
# if ignore_labels is None:
ignore_labels = ["O"]
logits_seg = model_outputs["logits"][0].numpy()
logits_ref = model_outputs["logits"][1].numpy()
sentence = model_outputs["sentence"]
token_offsets = model_outputs["token_offsets"]
input_ids = model_outputs["input_ids"]
special_tokens_mask = model_outputs["special_tokens_mask"]
offset_mapping = model_outputs["offset_mapping"] if model_outputs["offset_mapping"] is not None else None
maxes_seg = np.max(logits_seg, axis=-1, keepdims=True)
shifted_exp_seg = np.exp(logits_seg - maxes_seg)
scores_seg = shifted_exp_seg / shifted_exp_seg.sum(axis=-1, keepdims=True)
maxes_ref = np.max(logits_ref, axis=-1, keepdims=True)
shifted_exp_ref = np.exp(logits_ref - maxes_ref)
scores_ref = shifted_exp_ref / shifted_exp_ref.sum(axis=-1, keepdims=True)
pre_entities = self.gather_pre_entities(
input_ids, scores_seg, scores_ref, offset_mapping, special_tokens_mask
)
grouped_entities = self.aggregate(pre_entities, token_offsets, sentence)
cleaned_groups = []
for group in grouped_entities:
start, end = None, None
entities = []
group_dict = {}
for entity in group:
if entity.get("entity_group", None) in ignore_labels:
continue
if start is None or end is None:
start = entity["start"]
end = entity["end"]
else:
start = min(start, entity["start"])
end = max(end, entity["end"])
entities.append(entity)
if entities:
group_dict["reference_raw"] = sentence[start:end]
group_dict["entities"] = entities
cleaned_groups.append(group_dict)
# entities = [
# entity
# for entity in group
# if entity.get("entity_group", None) not in ignore_labels
# ]
# if entities:
# cleaned_groups.append(entities)
return {
"number_of_references": len(cleaned_groups),
"references": cleaned_groups,
}
def gather_pre_entities(
self,
input_ids: np.ndarray,
scores_seg: np.ndarray,
scores_ref: np.ndarray,
offset_mappings: Optional[List[Tuple[int, int]]],
special_tokens_masks: np.ndarray,
) -> List[dict]:
"""Fuse various numpy arrays into dicts with all the information needed for aggregation"""
pre_entities = []
for idx_list, (input_id, offset_mapping, special_tokens_mask, s_seg, s_ref) in enumerate(
zip(input_ids, offset_mappings, special_tokens_masks, scores_seg, scores_ref)):
for idx, iid in enumerate(input_id):
skip = False
if idx_list != 0 and idx <= 32:
skip = True
if special_tokens_mask[idx]:
continue
word = self.tokenizer.convert_ids_to_tokens(int(input_id[idx]))
if offset_mapping is not None:
start_ind, end_ind = offset_mapping[idx]
if not isinstance(start_ind, int):
if self.framework == "pt":
start_ind = start_ind.item()
end_ind = end_ind.item()
is_subword = not word.startswith('\u2581')
if int(input_id[idx]) == self.tokenizer.unk_token_id:
is_subword = False
else:
start_ind = None
end_ind = None
is_subword = False
pre_entity = {
"word": word,
"scores_seg": s_seg[idx],
"scores_ref": s_ref[idx],
"start": start_ind,
"end": end_ind,
"index": idx,
"is_subword": is_subword,
"is_stride": skip,
}
pre_entities.append(pre_entity)
return pre_entities
def aggregate(self, pre_entities: List[dict], token_offsets: List[tuple], sentence: str) -> List[dict]:
entities = self.aggregate_words(pre_entities, token_offsets)
return self.group_entities(entities, sentence)
def aggregate_word(self, entities: List[dict], token_offset: tuple) -> dict:
word = self.tokenizer.convert_tokens_to_string([entity["word"] for entity in entities])
scores_seg = entities[0]["scores_seg"]
idx_seg = scores_seg.argmax()
score_seg = scores_seg[idx_seg]
entity_seg = self.id2seg[idx_seg]
scores_ref = np.stack([entity["scores_ref"] for entity in entities])
indices_ref = scores_ref.argmax(axis=1)
idx_ref = 1 if all(indices_ref) else 0
entity_ref = self.id2ref[idx_ref]
new_entity = {
"entity_seg": entity_seg,
"score_seg": score_seg,
"entity_ref": entity_ref,
"word": word,
"start": entities[0]["start"] + token_offset[0],
"end": entities[-1]["end"] + token_offset[0],
}
return new_entity
def aggregate_words(self, entities: List[dict], token_offsets: List[tuple]) -> List[dict]:
"""
Override tokens from a given word that disagree to force agreement on word boundaries.
Example: micro|soft| com|pany| B-ENT I-NAME I-ENT I-ENT will be rewritten with first strategy as microsoft|
company| B-ENT I-ENT
"""
word_entities = []
word_group = None
idx = 0
for entity in entities:
if entity["is_stride"]:
continue
if word_group is None:
word_group = [entity]
elif entity["is_subword"]:
word_group.append(entity)
else:
word_entities.append(self.aggregate_word(word_group, token_offsets[idx]))
word_group = [entity]
idx += 1
word_entities.append(self.aggregate_word(word_group, token_offsets[idx]))
idx += 1
return word_entities
def group_entities(self, entities: List[dict], sentence: str) -> List[dict]:
"""
Find and group together the adjacent tokens with the same entity predicted.
Args:
entities (`dict`): The entities predicted by the pipeline.
"""
entity_chunk = []
entity_chunk_disagg = []
for entity in entities:
if not entity_chunk_disagg:
entity_chunk_disagg.append(entity)
continue
bi_ref, tag_ref = self.get_tag(entity["entity_ref"])
last_bi_ref, last_tag_ref = self.get_tag(entity_chunk_disagg[-1]["entity_ref"])
if tag_ref == last_tag_ref and bi_ref != "B":
entity_chunk_disagg.append(entity)
else:
entity_chunk.append(entity_chunk_disagg)
entity_chunk_disagg = [entity]
if entity_chunk_disagg:
entity_chunk.append(entity_chunk_disagg)
entity_chunks_all = []
for chunk in entity_chunk:
entity_groups = []
entity_group_disagg = []
for entity in chunk:
if not entity_group_disagg:
entity_group_disagg.append(entity)
continue
bi_seg, tag_seg = self.get_tag(entity["entity_seg"])
last_bi_seg, last_tag_seg = self.get_tag(entity_group_disagg[-1]["entity_seg"])
if tag_seg == last_tag_seg and bi_seg != "B":
entity_group_disagg.append(entity)
else:
entity_groups.append(self.group_sub_entities(entity_group_disagg, sentence))
entity_group_disagg = [entity]
if entity_group_disagg:
entity_groups.append(self.group_sub_entities(entity_group_disagg, sentence))
entity_chunks_all.append(entity_groups)
return entity_chunks_all
def group_sub_entities(self, entities: List[dict], sentence: str) -> dict:
"""
Group together the adjacent tokens with the same entity predicted.
Args:
entities (`dict`): The entities predicted by the pipeline.
"""
entity = entities[0]["entity_seg"].split("-")[-1]
scores = np.nanmean([entity["score_seg"] for entity in entities])
start = min([entity["start"] for entity in entities])
end = max([entity["end"] for entity in entities])
word = sentence[start:end]
entity_group = {
"entity_group": entity,
"score": np.mean(scores),
"word": word,
"start": entities[0]["start"],
"end": entities[-1]["end"],
}
return entity_group
def get_tag(self, entity_name: str) -> Tuple[str, str]:
if entity_name.startswith("B-"):
bi = "B"
tag = entity_name[2:]
elif entity_name.startswith("I-"):
bi = "I"
tag = entity_name[2:]
else:
bi = "I"
tag = entity_name
return bi, tag