GIZ
/

ppsingh commited on
Commit
40db28b
·
verified ·
1 Parent(s): 37cb065

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -6
README.md CHANGED
@@ -6,6 +6,19 @@ tags:
6
  model-index:
7
  - name: ADAPMIT-multilabel-bge
8
  results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -13,7 +26,7 @@ should probably proofread and complete it, then remove this comment. -->
13
 
14
  # ADAPMIT-multilabel-bge
15
 
16
- This model is a fine-tuned version of [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the None dataset.
17
  It achieves the following results on the evaluation set:
18
  - Loss: 0.3101
19
  - Precision-micro: 0.9058
@@ -28,7 +41,8 @@ It achieves the following results on the evaluation set:
28
 
29
  ## Model description
30
 
31
- More information needed
 
32
 
33
  ## Intended uses & limitations
34
 
@@ -36,7 +50,18 @@ More information needed
36
 
37
  ## Training and evaluation data
38
 
39
- More information needed
 
 
 
 
 
 
 
 
 
 
 
40
 
41
  ## Training procedure
42
 
@@ -60,11 +85,26 @@ The following hyperparameters were used during training:
60
  | 0.1807 | 2.0 | 1568 | 0.2549 | 0.9092 | 0.8643 | 0.9094 | 0.9156 | 0.8571 | 0.9156 | 0.9124 | 0.8571 | 0.9123 |
61
  | 0.0955 | 3.0 | 2352 | 0.2988 | 0.9069 | 0.8660 | 0.9072 | 0.9252 | 0.8655 | 0.9252 | 0.9160 | 0.8613 | 0.9160 |
62
  | 0.0495 | 4.0 | 3136 | 0.3101 | 0.9058 | 0.8647 | 0.9058 | 0.9305 | 0.8693 | 0.9305 | 0.9180 | 0.8622 | 0.9180 |
63
-
64
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
  ### Framework versions
66
 
67
  - Transformers 4.38.1
68
  - Pytorch 2.1.0+cu121
69
  - Datasets 2.18.0
70
- - Tokenizers 0.15.2
 
6
  model-index:
7
  - name: ADAPMIT-multilabel-bge
8
  results: []
9
+ datasets:
10
+ - GIZ/policy_classification
11
+ library_name: sentence-transformers
12
+
13
+ co2_eq_emissions:
14
+ emissions: 40.5174303026829
15
+ source: codecarbon
16
+ training_type: fine-tuning
17
+ on_cloud: true
18
+ cpu_model: Intel(R) Xeon(R) CPU @ 2.00GHz
19
+ ram_total_size: 12.6747894287109
20
+ hours_used: 0.994
21
+ hardware_used: 1 x Tesla T4
22
  ---
23
 
24
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
26
 
27
  # ADAPMIT-multilabel-bge
28
 
29
+ This model is a fine-tuned version of [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the on the [Policy-Classification](https://huggingface.co/datasets/GIZ/policy_classification) dataset.
30
  It achieves the following results on the evaluation set:
31
  - Loss: 0.3101
32
  - Precision-micro: 0.9058
 
41
 
42
  ## Model description
43
 
44
+ The purpose of this model is to predict multiple labels simultaneously from a given input data. Specifically, the model will predict 2 labels -
45
+ AdaptationLabel, MitigationLabel - that are relevant to a particular task or application
46
 
47
  ## Intended uses & limitations
48
 
 
50
 
51
  ## Training and evaluation data
52
 
53
+ - Training Dataset: 12538
54
+ | Class | Positive Count of Class|
55
+ |:-------------|:--------|
56
+ | AdaptationLabel | 5439 |
57
+ | MitigationLabel | 6659 |
58
+
59
+
60
+ - Validation Dataset: 1190
61
+ | Class | Positive Count of Class|
62
+ |:-------------|:--------|
63
+ | AdaptationLabel | 533 |
64
+ | MitigationLabel | 604 |
65
 
66
  ## Training procedure
67
 
 
85
  | 0.1807 | 2.0 | 1568 | 0.2549 | 0.9092 | 0.8643 | 0.9094 | 0.9156 | 0.8571 | 0.9156 | 0.9124 | 0.8571 | 0.9123 |
86
  | 0.0955 | 3.0 | 2352 | 0.2988 | 0.9069 | 0.8660 | 0.9072 | 0.9252 | 0.8655 | 0.9252 | 0.9160 | 0.8613 | 0.9160 |
87
  | 0.0495 | 4.0 | 3136 | 0.3101 | 0.9058 | 0.8647 | 0.9058 | 0.9305 | 0.8693 | 0.9305 | 0.9180 | 0.8622 | 0.9180 |
88
+ |label | precision |recall |f1-score| support|
89
+ |:-------------:|:---------:|:-----:|:------:|:------:|
90
+ |AdaptationLabel |0.910 |0.928 |0.919 | 533.0 |
91
+ |MitigationLabel |0.902 |0.932 |0.917 | 604.0 |
92
+
93
+ ### Environmental Impact
94
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
95
+ - **Carbon Emitted**: 0.04051 kg of CO2
96
+ - **Hours Used**: 0.994 hours
97
+
98
+ ### Training Hardware
99
+ - **On Cloud**: yes
100
+ - **GPU Model**: 1 x Tesla T4
101
+ - **CPU Model**: Intel(R) Xeon(R) CPU @ 2.00GHz
102
+ - **RAM Size**: 12.67 GB
103
+
104
+
105
  ### Framework versions
106
 
107
  - Transformers 4.38.1
108
  - Pytorch 2.1.0+cu121
109
  - Datasets 2.18.0
110
+ - Tokenizers 0.15.2