leavoigt commited on
Commit
668dcf2
·
1 Parent(s): 1aa6591

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - Precision_micro
10
+ - Precision_weighted
11
+ - Precision_samples
12
+ - Recall_micro
13
+ - Recall_weighted
14
+ - Recall_samples
15
+ - F1-Score
16
+ - accuracy
17
+ widget:
18
+ - text: Violence from intimate partners and male family members can escalate during
19
+ emergencies. This tends to increase as the crisis worsens, and men have lost their
20
+ jobs and status – particularly in communities with traditional gender roles, and
21
+ where family violence is normalised
22
+ - text: Expand livelihood protection policies that assist vulnerable, low-income individuals
23
+ to recover from damages associated with extreme weather events; provide support
24
+ and protection for internally displaced persons, persons displaced across borders
25
+ and host communities;. By 2026, draw up disaster recovery plans for all 22 municipalities
26
+ with resource inventories, first response measures and actions (including on logistics)
27
+ concerning humanitarian post-disaster needs.
28
+ - text: recurrent droughts, (decrease in amount of rainfall from 550 to 400mm in the
29
+ highlands), changes in seasonality that had resulted frequent crop failure, massive
30
+ death of livestock, genetic erosion, extinction of endemic species, degradation
31
+ of habitats and disequilibria in the ecosystem structure and function. The impact
32
+ of climate change is manifested in recurrent droughts, desertification, sea level
33
+ rise and increase in sea water temperature, depletion of ground water, widespread
34
+ land degradation, and emergence of climate sensitive diseases.
35
+ - text: They live in geographical regions and ecosystems that are the most vulnerable
36
+ to climate change. These include polar regions, humid tropical forests, high mountains,
37
+ small islands, coastal regions, and arid and semi-arid lands, among others. The
38
+ impacts of climate change in such regions have strong implications for the ecosystem-based
39
+ livelihoods on which many indigenous peoples depend. Moreover, in some regions
40
+ such as the Pacific, the very existence of many indigenous territories is under
41
+ threat from rising sea levels that not only pose a grave threat to indigenous
42
+ peoples’ livelihoods but also to their cultures and ways of life.
43
+ - text: Overcoming Poverty. Colombia, as a developing country, faces major socioeconomic
44
+ challenges. According to the official figures of DANE, by 2014, the percentage
45
+ of people in multidimensional poverty situation was 21.9% (this figure rises to
46
+ 44.1% if we take into account only the rural population). For the same year, 28.5%
47
+ of the population was found in a situation of monetary poverty (41.4% of the population
48
+ in the case of the villages and rural centers scattered).
49
+ pipeline_tag: text-classification
50
+ inference: false
51
+ base_model: sentence-transformers/all-mpnet-base-v2
52
+ model-index:
53
+ - name: SetFit with sentence-transformers/all-mpnet-base-v2
54
+ results:
55
+ - task:
56
+ type: text-classification
57
+ name: Text Classification
58
+ dataset:
59
+ name: Unknown
60
+ type: unknown
61
+ split: test
62
+ metrics:
63
+ - type: Precision_micro
64
+ value: 0.7972027972027972
65
+ name: Precision_Micro
66
+ - type: Precision_weighted
67
+ value: 0.8053038510784989
68
+ name: Precision_Weighted
69
+ - type: Precision_samples
70
+ value: 0.7972027972027972
71
+ name: Precision_Samples
72
+ - type: Recall_micro
73
+ value: 0.7972027972027972
74
+ name: Recall_Micro
75
+ - type: Recall_weighted
76
+ value: 0.7972027972027972
77
+ name: Recall_Weighted
78
+ - type: Recall_samples
79
+ value: 0.7972027972027972
80
+ name: Recall_Samples
81
+ - type: F1-Score
82
+ value: 0.7972027972027972
83
+ name: F1-Score
84
+ - type: accuracy
85
+ value: 0.7972027972027972
86
+ name: Accuracy
87
+ ---
88
+
89
+ # SetFit with sentence-transformers/all-mpnet-base-v2
90
+
91
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
92
+
93
+ The model has been trained using an efficient few-shot learning technique that involves:
94
+
95
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
96
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
97
+
98
+ ## Model Details
99
+
100
+ ### Model Description
101
+ - **Model Type:** SetFit
102
+ - **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
103
+ - **Classification head:** a OneVsRestClassifier instance
104
+ - **Maximum Sequence Length:** 384 tokens
105
+ <!-- - **Number of Classes:** Unknown -->
106
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
107
+ <!-- - **Language:** Unknown -->
108
+ <!-- - **License:** Unknown -->
109
+
110
+ ### Model Sources
111
+
112
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
113
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
114
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
115
+
116
+ ## Evaluation
117
+
118
+ ### Metrics
119
+ | Label | Precision_Micro | Precision_Weighted | Precision_Samples | Recall_Micro | Recall_Weighted | Recall_Samples | F1-Score | Accuracy |
120
+ |:--------|:----------------|:-------------------|:------------------|:-------------|:----------------|:---------------|:---------|:---------|
121
+ | **all** | 0.7972 | 0.8053 | 0.7972 | 0.7972 | 0.7972 | 0.7972 | 0.7972 | 0.7972 |
122
+
123
+ ## Uses
124
+
125
+ ### Direct Use for Inference
126
+
127
+ First install the SetFit library:
128
+
129
+ ```bash
130
+ pip install setfit
131
+ ```
132
+
133
+ Then you can load this model and run inference.
134
+
135
+ ```python
136
+ from setfit import SetFitModel
137
+
138
+ # Download from the 🤗 Hub
139
+ model = SetFitModel.from_pretrained("leavoigt/vulnerability_target")
140
+ # Run inference
141
+ preds = model("Violence from intimate partners and male family members can escalate during emergencies. This tends to increase as the crisis worsens, and men have lost their jobs and status – particularly in communities with traditional gender roles, and where family violence is normalised")
142
+ ```
143
+
144
+ <!--
145
+ ### Downstream Use
146
+
147
+ *List how someone could finetune this model on their own dataset.*
148
+ -->
149
+
150
+ <!--
151
+ ### Out-of-Scope Use
152
+
153
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
154
+ -->
155
+
156
+ <!--
157
+ ## Bias, Risks and Limitations
158
+
159
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
160
+ -->
161
+
162
+ <!--
163
+ ### Recommendations
164
+
165
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
166
+ -->
167
+
168
+ ## Training Details
169
+
170
+ ### Training Set Metrics
171
+ | Training set | Min | Median | Max |
172
+ |:-------------|:----|:--------|:----|
173
+ | Word count | 15 | 71.9518 | 238 |
174
+
175
+ ### Training Hyperparameters
176
+ - batch_size: (16, 16)
177
+ - num_epochs: (1, 1)
178
+ - max_steps: -1
179
+ - sampling_strategy: oversampling
180
+ - num_iterations: 20
181
+ - body_learning_rate: (2e-05, 2e-05)
182
+ - head_learning_rate: 2e-05
183
+ - loss: CosineSimilarityLoss
184
+ - distance_metric: cosine_distance
185
+ - margin: 0.25
186
+ - end_to_end: False
187
+ - use_amp: False
188
+ - warmup_proportion: 0.1
189
+ - seed: 42
190
+ - eval_max_steps: -1
191
+ - load_best_model_at_end: False
192
+
193
+ ### Training Results
194
+ | Epoch | Step | Training Loss | Validation Loss |
195
+ |:------:|:----:|:-------------:|:---------------:|
196
+ | 0.0012 | 1 | 0.2559 | - |
197
+ | 0.0602 | 50 | 0.2509 | - |
198
+ | 0.1205 | 100 | 0.2595 | - |
199
+ | 0.1807 | 150 | 0.0868 | - |
200
+ | 0.2410 | 200 | 0.0302 | - |
201
+ | 0.3012 | 250 | 0.0024 | - |
202
+ | 0.3614 | 300 | 0.0225 | - |
203
+ | 0.4217 | 350 | 0.0007 | - |
204
+ | 0.4819 | 400 | 0.0004 | - |
205
+ | 0.5422 | 450 | 0.0003 | - |
206
+ | 0.6024 | 500 | 0.0002 | - |
207
+ | 0.6627 | 550 | 0.0005 | - |
208
+ | 0.7229 | 600 | 0.0319 | - |
209
+ | 0.7831 | 650 | 0.0001 | - |
210
+ | 0.8434 | 700 | 0.0104 | - |
211
+ | 0.9036 | 750 | 0.0003 | - |
212
+ | 0.9639 | 800 | 0.0009 | - |
213
+
214
+ ### Framework Versions
215
+ - Python: 3.10.12
216
+ - SetFit: 1.0.1
217
+ - Sentence Transformers: 2.2.2
218
+ - Transformers: 4.25.1
219
+ - PyTorch: 2.1.0+cu121
220
+ - Datasets: 2.16.1
221
+ - Tokenizers: 0.13.3
222
+
223
+ ## Citation
224
+
225
+ ### BibTeX
226
+ ```bibtex
227
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
228
+ doi = {10.48550/ARXIV.2209.11055},
229
+ url = {https://arxiv.org/abs/2209.11055},
230
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
231
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
232
+ title = {Efficient Few-Shot Learning Without Prompts},
233
+ publisher = {arXiv},
234
+ year = {2022},
235
+ copyright = {Creative Commons Attribution 4.0 International}
236
+ }
237
+ ```
238
+
239
+ <!--
240
+ ## Glossary
241
+
242
+ *Clearly define terms in order to be accessible across audiences.*
243
+ -->
244
+
245
+ <!--
246
+ ## Model Card Authors
247
+
248
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
249
+ -->
250
+
251
+ <!--
252
+ ## Model Card Contact
253
+
254
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
255
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_all-mpnet-base-v2/",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.25.1",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21a68d4e0e07be270d3269ec0649d0450f5c2f5aacb912bb4381821794f08f6c
3
+ size 13956
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c76b3427c76aa76bb48187a1b4a7f125229943b9887e4c2bae30dbed7753011e
3
+ size 438016938
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "[UNK]"
15
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "do_lower_case": true,
5
+ "eos_token": "</s>",
6
+ "mask_token": "<mask>",
7
+ "model_max_length": 512,
8
+ "name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_all-mpnet-base-v2/",
9
+ "pad_token": "<pad>",
10
+ "sep_token": "</s>",
11
+ "special_tokens_map_file": null,
12
+ "strip_accents": null,
13
+ "tokenize_chinese_chars": true,
14
+ "tokenizer_class": "MPNetTokenizer",
15
+ "unk_token": "[UNK]"
16
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff