GVAmaresh
ini
c87f53a
from transformers import AutoTokenizer, AutoModel
import torch
import torch.nn.functional as F
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[
0
]
input_mask_expanded = (
attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
)
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
input_mask_expanded.sum(1), min=1e-9
)
def cosine_similarity(u, v):
return F.cosine_similarity(u, v, dim=1)
def compare(text1, text2):
sentences = [text1, text2]
tokenizer = AutoTokenizer.from_pretrained("dmlls/all-mpnet-base-v2-negation")
model = AutoModel.from_pretrained("dmlls/all-mpnet-base-v2-negation")
encoded_input = tokenizer(
sentences, padding=True, truncation=True, return_tensors="pt"
)
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input["attention_mask"])
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
similarity_score = cosine_similarity(
sentence_embeddings[0].unsqueeze(0), sentence_embeddings[1].unsqueeze(0)
)
return similarity_score.item()