GVAmaresh
ini
c87f53a
raw
history blame contribute delete
890 Bytes
from sentence_transformers import SentenceTransformer
# sentences = [
# "I like rainy days because they make me feel relaxed.",
# "I don't like rainy days because they don't make me feel relaxed."
# ]
# model = SentenceTransformer('dmlls/all-mpnet-base-v2-negation')
# embeddings = model.encode(sentences)
# from sklearn.metrics.pairwise import cosine_similarity
# similarity_score = cosine_similarity([embeddings[0]], [embeddings[1]])[0][0]
# similarity = (similarity_score + 1) / 2
# print("Similarity:", similarity)
def checkSimilarity(text1, text2):
model = SentenceTransformer('dmlls/all-mpnet-base-v2-negation')
embeddings = model.encode([text1, text2])
from sklearn.metrics.pairwise import cosine_similarity
similarity_score = cosine_similarity([embeddings[0]], [embeddings[1]])[0][0]
similarity = (similarity_score + 1) / 2
return similarity