from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F def mean_pooling(model_output, attention_mask): token_embeddings = model_output[ 0 ] input_mask_expanded = ( attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() ) return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp( input_mask_expanded.sum(1), min=1e-9 ) def cosine_similarity(u, v): return F.cosine_similarity(u, v, dim=1) def compare(text1, text2): sentences = [text1, text2] tokenizer = AutoTokenizer.from_pretrained("dmlls/all-mpnet-base-v2-negation") model = AutoModel.from_pretrained("dmlls/all-mpnet-base-v2-negation") encoded_input = tokenizer( sentences, padding=True, truncation=True, return_tensors="pt" ) with torch.no_grad(): model_output = model(**encoded_input) sentence_embeddings = mean_pooling(model_output, encoded_input["attention_mask"]) sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) similarity_score = cosine_similarity( sentence_embeddings[0].unsqueeze(0), sentence_embeddings[1].unsqueeze(0) ) return similarity_score.item()