from sentence_transformers import SentenceTransformer # sentences = [ # "I like rainy days because they make me feel relaxed.", # "I don't like rainy days because they don't make me feel relaxed." # ] # model = SentenceTransformer('dmlls/all-mpnet-base-v2-negation') # embeddings = model.encode(sentences) # from sklearn.metrics.pairwise import cosine_similarity # similarity_score = cosine_similarity([embeddings[0]], [embeddings[1]])[0][0] # similarity = (similarity_score + 1) / 2 # print("Similarity:", similarity) def checkSimilarity(text1, text2): model = SentenceTransformer('dmlls/all-mpnet-base-v2-negation') embeddings = model.encode([text1, text2]) from sklearn.metrics.pairwise import cosine_similarity similarity_score = cosine_similarity([embeddings[0]], [embeddings[1]])[0][0] similarity = (similarity_score + 1) / 2 return similarity