Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1693.79 +/- 465.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4fb52619b35d39867aa4acdb96d579dee97886f6894cb2cc4cbc44e4ddee8b6e
|
3 |
+
size 129005
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f622cdbbee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f622cdbbf70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f622cdc0040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f622cdc00d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f622cdc0160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f622cdc01f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f622cdc0280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f622cdc0310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f622cdc03a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f622cdc0430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f622cdc04c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f622cdc0550>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f622cda8c00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1678277980013564933,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAElWrb8Kt/K/2kyfv79q6b/4Pk4+xTg7Pdw/Yr8+1nM/zbkDwDspxL5bAW2/3K4NvAzyiL+GxTa+AJpbP62hTT3iuYs+PzY0vhrw4r6Tij88GQNOQNmZy76pj+G+Q+JOvAJeij/HfwQ/BKEXP+1Pgz/k4jW/jdQZQMihjcCDfuq/W+KpPgGhlj02b1q/mj7DP1kthsDHv1u8qeFsv72rWrxmLy4/1BqSPZ9arb7P7Mu9JcXcv10H0z0Ro7q/PsnbPEwGn0A5Ex88CoVFv3EeY70CXoo/x38EPwShFz/tT4M/KwKjv4Dduj+tyoS+wZ2cv6oBar7xb0c/94wYvbRUzz7xMSa/4Gx2P3+qa7/83PG70lqCP/bUAb9khCc//J0eP0R2ML7V1nK/xCEKP637ib8E6JlAYkMHv2XDbr6H7qw+sNFsv8d/BD8EoRc/7U+DP73+XT8HJXM/LLljPlwqjT/AKOo+CdEJP0lQrr56DHu/pNMYP6QsTEA1Jq0/S+zkPhaipL+wDr49/2ILv+bSIr+v6UW/Q1CPvmMy/j1uhO0/UKqyvqx9GD/RH9s+wG43PQJeij/HfwQ/BKEXP+yKeb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAbbdg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEtvxvQAAAAD2Aea/AAAAADCi4jwAAAAAOyjtPwAAAAB5urY9AAAAADe7+D8AAAAAKoowvQAAAADdQgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPbiitgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgECEAj4AAAAAvNTivwAAAAB1fpA9AAAAAOj24D8AAAAAjMQIvAAAAAC+INs/AAAAAE2NEj4AAAAAyYXkvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGb8PTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBf0JE8AAAAAL0k6r8AAAAAE+PnPQAAAAAp/fU/AAAAAJUE1j0AAAAAXqbcPwAAAADir5o9AAAAAMxE9b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABLTr41AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcqaLPQAAAADT5e2/AAAAAD7/qz0AAAAA+prkPwAAAACBSko9AAAAAD4X4j8AAAAAZxvgOwAAAABH5PW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ8DGieumrOMAWyUTegDjAF0lEdAsXVvZ26kI3V9lChoBkdAm0XZBkZrHmgHTegDaAhHQLF3ohIOH311fZQoaAZHQJqw9TS9du5oB03oA2gIR0Cxd+mZy+6AdX2UKGgGR0Cfhj8fFJg9aAdN6ANoCEdAsXsqTRplBnV9lChoBkdAm7nBL9MsYmgHTegDaAhHQLF9dDst03h1fZQoaAZHQJ3Zk7OmixpoB03oA2gIR0Cxf1VgDzRQdX2UKGgGR0CdJQVRk3CLaAdN6ANoCEdAsX+ZFb3XZ3V9lChoBkdAni7RJEpiJGgHTegDaAhHQLGD3ieNDMN1fZQoaAZHQJ1sop3HJcRoB03oA2gIR0CxhzDP8hs7dX2UKGgGR0CYsCb1h9b5aAdN6ANoCEdAsYkCArhBJXV9lChoBkdAnB1SeI2wV2gHTegDaAhHQLGJQuc+aBt1fZQoaAZHQJtKjYFqzqtoB03oA2gIR0CxjGuzQeFMdX2UKGgGR0Ce5rfnOjZdaAdN6ANoCEdAsY6ffCQ9zXV9lChoBkdAloMFQyhzvWgHTegDaAhHQLGQaGIsRQJ1fZQoaAZHQJt9o1ZTyaxoB03oA2gIR0CxkKxDgIhRdX2UKGgGR0CbP4g00m+kaAdN6ANoCEdAsZVmq+8Gs3V9lChoBkdAmxsIH9m6G2gHTegDaAhHQLGYRuIhyKh1fZQoaAZHQJx7GuuA7PpoB03oA2gIR0CxmhQE+xGEdX2UKGgGR0CZsdQdCE6DaAdN6ANoCEdAsZpW801qFnV9lChoBkdAmTEn7DVH4GgHTegDaAhHQLGdjYigTRJ1fZQoaAZHQJuS4uSOinJoB03oA2gIR0Cxn88HjZL7dX2UKGgGR0CclHxeLNwBaAdN6ANoCEdAsaHcC4jKPnV9lChoBkdAnAFyNjslcGgHTegDaAhHQLGiOyE+Pil1fZQoaAZHQJcwZ/MGHHpoB03oA2gIR0Cxpy5Uo8ZDdX2UKGgGR0CerKA3T/hmaAdN6ANoCEdAsamFbD/EO3V9lChoBkdAmokZGnXNDGgHTegDaAhHQLGrSkI5YHR1fZQoaAZHQJrMIDYAbQ1oB03oA2gIR0Cxq42n0kGBdX2UKGgGR0CdgGk8A7xNaAdN6ANoCEdAsa61m7J4jnV9lChoBkdAnV0KEBbOeWgHTegDaAhHQLGw+H+qBEt1fZQoaAZHQJZIXtnf2sdoB03oA2gIR0Cxs3GCdz4ldX2UKGgGR0CbeFE12q1gaAdN6ANoCEdAsbPTsWweNnV9lChoBkdAm/B7hR64UmgHTegDaAhHQLG4VCuEEkl1fZQoaAZHQJihod5prUNoB03oA2gIR0CxupHzQNTcdX2UKGgGR0Cevgq9XcQAaAdN6ANoCEdAsbxmPxQSBnV9lChoBkdAmxBAzguRLmgHTegDaAhHQLG8qMYMvyt1fZQoaAZHQJa0Iflp48loB03oA2gIR0Cxv+tALRa5dX2UKGgGR0CUiREit7rtaAdN6ANoCEdAscJtKjBVMnV9lChoBkdAl5zRL0z0pWgHTegDaAhHQLHFHLdvbXZ1fZQoaAZHQJsCEnssxwhoB03oA2gIR0CxxYZLdvbXdX2UKGgGR0Cf9JJC0F8paAdN6ANoCEdAscmNyCFsYXV9lChoBkdAl3E8w5/9YWgHTegDaAhHQLHL4aXrt3R1fZQoaAZHQJ024HWz4UNoB03oA2gIR0Cxzb9ycTakdX2UKGgGR0CWpXdfb9IgaAdN6ANoCEdAsc4BCpm29nV9lChoBkdAmK31zySV4WgHTegDaAhHQLHRRUVi4KB1fZQoaAZHQJ1MEka/ATJoB03oA2gIR0Cx1E45ggHNdX2UKGgGR0CfOIPU8V59aAdN6ANoCEdAsdcpy7wrlXV9lChoBkdAnHh/l+3H72gHTegDaAhHQLHXkj2zv7Z1fZQoaAZHQJ5YgBgeA/doB03oA2gIR0Cx2xmphnandX2UKGgGR0CfuveMAFPjaAdN6ANoCEdAsd189yLhrHV9lChoBkdAmO20QbuMM2gHTegDaAhHQLHfY/5Lytp1fZQoaAZHQJhXmJGe+VVoB03oA2gIR0Cx36j/6wdKdX2UKGgGR0CD0wPCEYfoaAdN6ANoCEdAseNrWtlqanV9lChoBkdAoEKYOjIq9WgHTegDaAhHQLHm/7voePt1fZQoaAZHQIfMOuTzNEBoB03oA2gIR0Cx6WMKohpydX2UKGgGR0Cg23JKjBVNaAdN6ANoCEdAsemqJN0vG3V9lChoBkdAoUmWVX3g1mgHTegDaAhHQLHs+ZhrnDB1fZQoaAZHQJB+KcEvCdloB03oA2gIR0Cx71FY2bXpdX2UKGgGR0CeD9gDA8B/aAdN6ANoCEdAsfE1zaK1onV9lChoBkdAoGZLdBSk02gHTegDaAhHQLHxenlnyup1fZQoaAZHQJwbcOavzOJoB03oA2gIR0Cx9gouPFNtdX2UKGgGR0CfdKQpnYg8aAdN6ANoCEdAsflHeJpFkXV9lChoBkdAoAO4u01IiGgHTegDaAhHQLH7L0ngHeJ1fZQoaAZHQJxUkP4EfT1oB03oA2gIR0Cx+3a0QbuMdX2UKGgGR0CeU6CAMDwIaAdN6ANoCEdAsf7Bqxkd3nV9lChoBkdAnYl3xjJ+2GgHTegDaAhHQLIBFeokzGh1fZQoaAZHQJ6qlEhJRO1oB03oA2gIR0CyAyEjX4CZdX2UKGgGR0CgVRcJUo8ZaAdN6ANoCEdAsgOEsxwhn3V9lChoBkdAmGGAbVBlc2gHTegDaAhHQLIIhPEsJ6Z1fZQoaAZHQKECuCW/rSpoB03oA2gIR0CyCvGBvrGBdX2UKGgGR0CUKqjFQ2uQaAdN6ANoCEdAsgzbZvkzXXV9lChoBkdAoG/BMSK3u2gHTegDaAhHQLINJARChOB1fZQoaAZHQISTjzbvgFZoB03oA2gIR0CyEI+3H7xedX2UKGgGR0CbD+HM2WIHaAdN6ANoCEdAshMCaDwpfHV9lChoBkdAkAjRlpXZG2gHTegDaAhHQLIVvlE7W/d1fZQoaAZHQJwztfkWAPNoB03oA2gIR0CyFimQSzw+dX2UKGgGR0CWJIUUwi7kaAdN6ANoCEdAshp0gX/HYHV9lChoBkdAku5hlUZNwmgHTegDaAhHQLIcuJQtSQ51fZQoaAZHQJmOVuMuOCJoB03oA2gIR0CyHpSZa3ZxdX2UKGgGR0CViUEGZ/kOaAdN6ANoCEdAsh7ayyD7InV9lChoBkdAntJekcjqwGgHTegDaAhHQLIiPPepGWl1fZQoaAZHQJjVvxAjY7JoB03oA2gIR0CyJUYcaOxTdX2UKGgGR0CQ1Y8ZUDMeaAdN6ANoCEdAsigo2UB4lnV9lChoBkdAl8jCADq4Y2gHTegDaAhHQLIomIjGDL91fZQoaAZHQIcfTWy1NQFoB03oA2gIR0CyLCa4+bExdX2UKGgGR0CRmxL6k691aAdN6ANoCEdAsi57e7+T/3V9lChoBkdAkoBgkgOjI2gHTegDaAhHQLIwWCRfWtl1fZQoaAZHQIUgNhLGrCFoB03oA2gIR0CyMJ79AHE/dX2UKGgGR0CFKvoZAIIGaAdN6ANoCEdAsjRmWUr08XV9lChoBkdAftHRxcVxj2gHTegDaAhHQLI34+OwPiF1fZQoaAZHQJUhByJbdJtoB03oA2gIR0CyOmCGahHtdX2UKGgGR0CWBVEbHZK4aAdN6ANoCEdAsjqoTufEoHV9lChoBkdAldTJhz/6wmgHTegDaAhHQLI+DO0LMLZ1fZQoaAZHQI5Ik6ij+JhoB03oA2gIR0CyQGfViF0xdX2UKGgGR0CXEJBAfMfSaAdN6ANoCEdAskJKuJUHZHV9lChoBkdAkC4LY02tMmgHTegDaAhHQLJCjpHZsbh1fZQoaAZHQJx27/0dzXBoB03oA2gIR0CyRt1DOTq0dX2UKGgGR0Ca+RbKifxuaAdN6ANoCEdAsko9h7Vrh3V9lChoBkdAncL8Rg7YCmgHTegDaAhHQLJMGKx9oex1fZQoaAZHQJ8am6K+BYpoB03oA2gIR0CyTF9dZ7ojdX2UKGgGR0CgnZSsbNr1aAdN6ANoCEdAsk+lgeA/cHVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:886adf5d12b630ad4b2d2c83a2ef31748a286e51ed5493ca677dfba8671e3ca7
|
3 |
+
size 56062
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b4a23c9ddde9279cfa14322bdf088c734d1a648ef58e60dd0a419d71a8f1aae
|
3 |
+
size 56830
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f622cdbbee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f622cdbbf70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f622cdc0040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f622cdc00d0>", "_build": "<function ActorCriticPolicy._build at 0x7f622cdc0160>", "forward": "<function ActorCriticPolicy.forward at 0x7f622cdc01f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f622cdc0280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f622cdc0310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f622cdc03a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f622cdc0430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f622cdc04c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f622cdc0550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f622cda8c00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678277980013564933, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAElWrb8Kt/K/2kyfv79q6b/4Pk4+xTg7Pdw/Yr8+1nM/zbkDwDspxL5bAW2/3K4NvAzyiL+GxTa+AJpbP62hTT3iuYs+PzY0vhrw4r6Tij88GQNOQNmZy76pj+G+Q+JOvAJeij/HfwQ/BKEXP+1Pgz/k4jW/jdQZQMihjcCDfuq/W+KpPgGhlj02b1q/mj7DP1kthsDHv1u8qeFsv72rWrxmLy4/1BqSPZ9arb7P7Mu9JcXcv10H0z0Ro7q/PsnbPEwGn0A5Ex88CoVFv3EeY70CXoo/x38EPwShFz/tT4M/KwKjv4Dduj+tyoS+wZ2cv6oBar7xb0c/94wYvbRUzz7xMSa/4Gx2P3+qa7/83PG70lqCP/bUAb9khCc//J0eP0R2ML7V1nK/xCEKP637ib8E6JlAYkMHv2XDbr6H7qw+sNFsv8d/BD8EoRc/7U+DP73+XT8HJXM/LLljPlwqjT/AKOo+CdEJP0lQrr56DHu/pNMYP6QsTEA1Jq0/S+zkPhaipL+wDr49/2ILv+bSIr+v6UW/Q1CPvmMy/j1uhO0/UKqyvqx9GD/RH9s+wG43PQJeij/HfwQ/BKEXP+yKeb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAbbdg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEtvxvQAAAAD2Aea/AAAAADCi4jwAAAAAOyjtPwAAAAB5urY9AAAAADe7+D8AAAAAKoowvQAAAADdQgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPbiitgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgECEAj4AAAAAvNTivwAAAAB1fpA9AAAAAOj24D8AAAAAjMQIvAAAAAC+INs/AAAAAE2NEj4AAAAAyYXkvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGb8PTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBf0JE8AAAAAL0k6r8AAAAAE+PnPQAAAAAp/fU/AAAAAJUE1j0AAAAAXqbcPwAAAADir5o9AAAAAMxE9b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABLTr41AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcqaLPQAAAADT5e2/AAAAAD7/qz0AAAAA+prkPwAAAACBSko9AAAAAD4X4j8AAAAAZxvgOwAAAABH5PW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ8DGieumrOMAWyUTegDjAF0lEdAsXVvZ26kI3V9lChoBkdAm0XZBkZrHmgHTegDaAhHQLF3ohIOH311fZQoaAZHQJqw9TS9du5oB03oA2gIR0Cxd+mZy+6AdX2UKGgGR0Cfhj8fFJg9aAdN6ANoCEdAsXsqTRplBnV9lChoBkdAm7nBL9MsYmgHTegDaAhHQLF9dDst03h1fZQoaAZHQJ3Zk7OmixpoB03oA2gIR0Cxf1VgDzRQdX2UKGgGR0CdJQVRk3CLaAdN6ANoCEdAsX+ZFb3XZ3V9lChoBkdAni7RJEpiJGgHTegDaAhHQLGD3ieNDMN1fZQoaAZHQJ1sop3HJcRoB03oA2gIR0CxhzDP8hs7dX2UKGgGR0CYsCb1h9b5aAdN6ANoCEdAsYkCArhBJXV9lChoBkdAnB1SeI2wV2gHTegDaAhHQLGJQuc+aBt1fZQoaAZHQJtKjYFqzqtoB03oA2gIR0CxjGuzQeFMdX2UKGgGR0Ce5rfnOjZdaAdN6ANoCEdAsY6ffCQ9zXV9lChoBkdAloMFQyhzvWgHTegDaAhHQLGQaGIsRQJ1fZQoaAZHQJt9o1ZTyaxoB03oA2gIR0CxkKxDgIhRdX2UKGgGR0CbP4g00m+kaAdN6ANoCEdAsZVmq+8Gs3V9lChoBkdAmxsIH9m6G2gHTegDaAhHQLGYRuIhyKh1fZQoaAZHQJx7GuuA7PpoB03oA2gIR0CxmhQE+xGEdX2UKGgGR0CZsdQdCE6DaAdN6ANoCEdAsZpW801qFnV9lChoBkdAmTEn7DVH4GgHTegDaAhHQLGdjYigTRJ1fZQoaAZHQJuS4uSOinJoB03oA2gIR0Cxn88HjZL7dX2UKGgGR0CclHxeLNwBaAdN6ANoCEdAsaHcC4jKPnV9lChoBkdAnAFyNjslcGgHTegDaAhHQLGiOyE+Pil1fZQoaAZHQJcwZ/MGHHpoB03oA2gIR0Cxpy5Uo8ZDdX2UKGgGR0CerKA3T/hmaAdN6ANoCEdAsamFbD/EO3V9lChoBkdAmokZGnXNDGgHTegDaAhHQLGrSkI5YHR1fZQoaAZHQJrMIDYAbQ1oB03oA2gIR0Cxq42n0kGBdX2UKGgGR0CdgGk8A7xNaAdN6ANoCEdAsa61m7J4jnV9lChoBkdAnV0KEBbOeWgHTegDaAhHQLGw+H+qBEt1fZQoaAZHQJZIXtnf2sdoB03oA2gIR0Cxs3GCdz4ldX2UKGgGR0CbeFE12q1gaAdN6ANoCEdAsbPTsWweNnV9lChoBkdAm/B7hR64UmgHTegDaAhHQLG4VCuEEkl1fZQoaAZHQJihod5prUNoB03oA2gIR0CxupHzQNTcdX2UKGgGR0Cevgq9XcQAaAdN6ANoCEdAsbxmPxQSBnV9lChoBkdAmxBAzguRLmgHTegDaAhHQLG8qMYMvyt1fZQoaAZHQJa0Iflp48loB03oA2gIR0Cxv+tALRa5dX2UKGgGR0CUiREit7rtaAdN6ANoCEdAscJtKjBVMnV9lChoBkdAl5zRL0z0pWgHTegDaAhHQLHFHLdvbXZ1fZQoaAZHQJsCEnssxwhoB03oA2gIR0CxxYZLdvbXdX2UKGgGR0Cf9JJC0F8paAdN6ANoCEdAscmNyCFsYXV9lChoBkdAl3E8w5/9YWgHTegDaAhHQLHL4aXrt3R1fZQoaAZHQJ024HWz4UNoB03oA2gIR0Cxzb9ycTakdX2UKGgGR0CWpXdfb9IgaAdN6ANoCEdAsc4BCpm29nV9lChoBkdAmK31zySV4WgHTegDaAhHQLHRRUVi4KB1fZQoaAZHQJ1MEka/ATJoB03oA2gIR0Cx1E45ggHNdX2UKGgGR0CfOIPU8V59aAdN6ANoCEdAsdcpy7wrlXV9lChoBkdAnHh/l+3H72gHTegDaAhHQLHXkj2zv7Z1fZQoaAZHQJ5YgBgeA/doB03oA2gIR0Cx2xmphnandX2UKGgGR0CfuveMAFPjaAdN6ANoCEdAsd189yLhrHV9lChoBkdAmO20QbuMM2gHTegDaAhHQLHfY/5Lytp1fZQoaAZHQJhXmJGe+VVoB03oA2gIR0Cx36j/6wdKdX2UKGgGR0CD0wPCEYfoaAdN6ANoCEdAseNrWtlqanV9lChoBkdAoEKYOjIq9WgHTegDaAhHQLHm/7voePt1fZQoaAZHQIfMOuTzNEBoB03oA2gIR0Cx6WMKohpydX2UKGgGR0Cg23JKjBVNaAdN6ANoCEdAsemqJN0vG3V9lChoBkdAoUmWVX3g1mgHTegDaAhHQLHs+ZhrnDB1fZQoaAZHQJB+KcEvCdloB03oA2gIR0Cx71FY2bXpdX2UKGgGR0CeD9gDA8B/aAdN6ANoCEdAsfE1zaK1onV9lChoBkdAoGZLdBSk02gHTegDaAhHQLHxenlnyup1fZQoaAZHQJwbcOavzOJoB03oA2gIR0Cx9gouPFNtdX2UKGgGR0CfdKQpnYg8aAdN6ANoCEdAsflHeJpFkXV9lChoBkdAoAO4u01IiGgHTegDaAhHQLH7L0ngHeJ1fZQoaAZHQJxUkP4EfT1oB03oA2gIR0Cx+3a0QbuMdX2UKGgGR0CeU6CAMDwIaAdN6ANoCEdAsf7Bqxkd3nV9lChoBkdAnYl3xjJ+2GgHTegDaAhHQLIBFeokzGh1fZQoaAZHQJ6qlEhJRO1oB03oA2gIR0CyAyEjX4CZdX2UKGgGR0CgVRcJUo8ZaAdN6ANoCEdAsgOEsxwhn3V9lChoBkdAmGGAbVBlc2gHTegDaAhHQLIIhPEsJ6Z1fZQoaAZHQKECuCW/rSpoB03oA2gIR0CyCvGBvrGBdX2UKGgGR0CUKqjFQ2uQaAdN6ANoCEdAsgzbZvkzXXV9lChoBkdAoG/BMSK3u2gHTegDaAhHQLINJARChOB1fZQoaAZHQISTjzbvgFZoB03oA2gIR0CyEI+3H7xedX2UKGgGR0CbD+HM2WIHaAdN6ANoCEdAshMCaDwpfHV9lChoBkdAkAjRlpXZG2gHTegDaAhHQLIVvlE7W/d1fZQoaAZHQJwztfkWAPNoB03oA2gIR0CyFimQSzw+dX2UKGgGR0CWJIUUwi7kaAdN6ANoCEdAshp0gX/HYHV9lChoBkdAku5hlUZNwmgHTegDaAhHQLIcuJQtSQ51fZQoaAZHQJmOVuMuOCJoB03oA2gIR0CyHpSZa3ZxdX2UKGgGR0CViUEGZ/kOaAdN6ANoCEdAsh7ayyD7InV9lChoBkdAntJekcjqwGgHTegDaAhHQLIiPPepGWl1fZQoaAZHQJjVvxAjY7JoB03oA2gIR0CyJUYcaOxTdX2UKGgGR0CQ1Y8ZUDMeaAdN6ANoCEdAsigo2UB4lnV9lChoBkdAl8jCADq4Y2gHTegDaAhHQLIomIjGDL91fZQoaAZHQIcfTWy1NQFoB03oA2gIR0CyLCa4+bExdX2UKGgGR0CRmxL6k691aAdN6ANoCEdAsi57e7+T/3V9lChoBkdAkoBgkgOjI2gHTegDaAhHQLIwWCRfWtl1fZQoaAZHQIUgNhLGrCFoB03oA2gIR0CyMJ79AHE/dX2UKGgGR0CFKvoZAIIGaAdN6ANoCEdAsjRmWUr08XV9lChoBkdAftHRxcVxj2gHTegDaAhHQLI34+OwPiF1fZQoaAZHQJUhByJbdJtoB03oA2gIR0CyOmCGahHtdX2UKGgGR0CWBVEbHZK4aAdN6ANoCEdAsjqoTufEoHV9lChoBkdAldTJhz/6wmgHTegDaAhHQLI+DO0LMLZ1fZQoaAZHQI5Ik6ij+JhoB03oA2gIR0CyQGfViF0xdX2UKGgGR0CXEJBAfMfSaAdN6ANoCEdAskJKuJUHZHV9lChoBkdAkC4LY02tMmgHTegDaAhHQLJCjpHZsbh1fZQoaAZHQJx27/0dzXBoB03oA2gIR0CyRt1DOTq0dX2UKGgGR0Ca+RbKifxuaAdN6ANoCEdAsko9h7Vrh3V9lChoBkdAncL8Rg7YCmgHTegDaAhHQLJMGKx9oex1fZQoaAZHQJ8am6K+BYpoB03oA2gIR0CyTF9dZ7ojdX2UKGgGR0CgnZSsbNr1aAdN6ANoCEdAsk+lgeA/cHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0fbfbf16bd55d54fa98051519327d085f63f6bb99c7cb612ef54b708e30fbf8f
|
3 |
+
size 1081034
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1693.789520367724, "std_reward": 464.9964239786135, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-08T13:37:28.085655"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5497b8f10e2434571a4439f9db9361bc5a631857ce745978942ccbec58ef7cfe
|
3 |
+
size 2136
|