Gabi00 commited on
Commit
d85514e
·
verified ·
1 Parent(s): 2f8ac44

Model save

Browse files
Files changed (1) hide show
  1. README.md +5 -20
README.md CHANGED
@@ -1,9 +1,7 @@
1
  ---
2
  base_model: openai/whisper-large-v3
3
  datasets:
4
- - Gabi00/english-mistakes
5
- language:
6
- - eng
7
  library_name: peft
8
  license: apache-2.0
9
  metrics:
@@ -11,29 +9,16 @@ metrics:
11
  tags:
12
  - generated_from_trainer
13
  model-index:
14
- - name: Whisper Small Eng - Gabriel Mora
15
- results:
16
- - task:
17
- type: automatic-speech-recognition
18
- name: Automatic Speech Recognition
19
- dataset:
20
- name: English-mistakes
21
- type: Gabi00/english-mistakes
22
- config: default
23
- split: validation
24
- args: 'config: eng, split: test'
25
- metrics:
26
- - type: wer
27
- value: 12.326814527624153
28
- name: Wer
29
  ---
30
 
31
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
32
  should probably proofread and complete it, then remove this comment. -->
33
 
34
- # Whisper Small Eng - Gabriel Mora
35
 
36
- This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the English-mistakes dataset.
37
  It achieves the following results on the evaluation set:
38
  - Loss: 0.3590
39
  - Wer: 12.3268
 
1
  ---
2
  base_model: openai/whisper-large-v3
3
  datasets:
4
+ - audiofolder
 
 
5
  library_name: peft
6
  license: apache-2.0
7
  metrics:
 
9
  tags:
10
  - generated_from_trainer
11
  model-index:
12
+ - name: whisper-v3-LoRA-en_students_test_2
13
+ results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
  should probably proofread and complete it, then remove this comment. -->
18
 
19
+ # whisper-v3-LoRA-en_students_test_2
20
 
21
+ This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the audiofolder dataset.
22
  It achieves the following results on the evaluation set:
23
  - Loss: 0.3590
24
  - Wer: 12.3268