Qwen2-VL-2B-Instruct / handler.py
Gabriel's picture
Update handler.py
11ae0dd verified
raw
history blame
2.65 kB
from typing import Dict, Any
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
from PIL import Image
import io
import base64
import requests
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class EndpointHandler():
def __init__(self, path=""):
self.processor = AutoProcessor.from_pretrained(path)
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
path, device_map="auto"
)
self.model.to(device)
def __call__(self, data: Any) -> Dict[str, Any]:
inputs = data.pop("inputs", data)
image_input = inputs.get('image')
text_input = inputs.get('text', "Describe this image.")
if not image_input:
return {"error": "No image provided."}
try:
if image_input.startswith('http'):
response = requests.get(image_input, stream=True)
if response.status_code == 200:
image = Image.open(response.raw).convert('RGB')
else:
return {"error": f"Failed to fetch image. Status code: {response.status_code}"}
else:
image_data = base64.b64decode(image_input)
image = Image.open(io.BytesIO(image_data)).convert('RGB')
except Exception as e:
return {"error": f"Failed to process the image. Details: {str(e)}"}
try:
conversation = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": text_input},
],
}
]
text_prompt = self.processor.apply_chat_template(
conversation, add_generation_prompt=True
)
inputs = self.processor(
text=[text_prompt],
images=[image],
padding=True,
return_tensors="pt",
)
inputs = inputs.to(device)
output_ids = self.model.generate(
**inputs, max_new_tokens=128
)
generated_ids = [
output_id[len(input_id):] for input_id, output_id in zip(inputs.input_ids, output_ids)
]
output_text = self.processor.batch_decode(
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)[0]
return {"generated_text": output_text}
except Exception as e:
return {"error": f"Failed during generation. Details: {str(e)}"}