File size: 1,777 Bytes
e706c52 eacc8d0 e706c52 975fa91 983cc5c e706c52 983cc5c 975fa91 983cc5c e706c52 eacc8d0 e706c52 975fa91 eacc8d0 975fa91 e706c52 eacc8d0 975fa91 eacc8d0 975fa91 eacc8d0 e706c52 eacc8d0 975fa91 eacc8d0 e706c52 eacc8d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
from typing import Dict, Any
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
from PIL import Image
import io
import base64
import requests
class EndpointHandler():
def __init__(self, path=""):
self.processor = AutoProcessor.from_pretrained(path)
self.model = Qwen2VLForConditionalGeneration.from_pretrained(path)
def __call__(self, data: Any) -> Dict[str, Any]:
image_input = data.get('image', None)
text_input = data.get('text', None)
if isinstance(data, dict):
if image_input.startswith('http'):
image = Image.open(requests.get(image_input, stream=True).raw).convert('RGB')
else:
image_data = base64.b64decode(image_input)
image = Image.open(io.BytesIO(image_data)).convert('RGB')
else:
return {"error": "Invalid input data. Expected binary image data or a dictionary with 'image' key."}
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": text_input},
],
}
]
text = self.processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = self.processor(
text=[text],
images=[image],
padding=True,
return_tensors="pt",
).to(self.device)
generate_ids = self.model.generate(inputs.input_ids, max_length=30)
output_text = self.processor.batch_decode(
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
return {"generated_text": output_text}
|