File size: 2,278 Bytes
0c1a6df 59ab818 0c1a6df 59ab818 0c1a6df a80318f 0c1a6df a80318f 0c1a6df 59ab818 0c1a6df a80318f 0c1a6df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: apache-2.0
base_model: google-t5/t5-small
tags:
- summarization
- generated_from_trainer
datasets:
- scientific_papers
metrics:
- rouge
model-index:
- name: t5-small-finetuned-scientific-articles
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: scientific_papers
type: scientific_papers
config: pubmed
split: train
args: pubmed
metrics:
- name: Rouge1
type: rouge
value: 7.8805
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-scientific-articles
This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on the scientific_papers dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2246
- Rouge1: 7.8805
- Rouge2: 2.622
- Rougel: 6.7327
- Rougelsum: 7.3172
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 9
- eval_batch_size: 9
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 7.3084 | 1.0 | 56 | 5.4563 | 6.7162 | 2.0525 | 5.6729 | 6.2076 |
| 4.5048 | 2.0 | 112 | 3.8325 | 7.2382 | 2.4034 | 6.1187 | 6.674 |
| 3.7194 | 3.0 | 168 | 3.4523 | 7.7064 | 2.2556 | 6.4334 | 7.1049 |
| 3.5218 | 4.0 | 224 | 3.3173 | 8.1033 | 2.6122 | 6.8396 | 7.4375 |
| 3.4221 | 5.0 | 280 | 3.2246 | 7.8805 | 2.622 | 6.7327 | 7.3172 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|