DQN trained with rl-baselines3-zoo.
Browse files- .gitattributes +1 -0
- DQN-mountaincar-zoo.zip +3 -0
- DQN-mountaincar-zoo/_stable_baselines3_version +1 -0
- DQN-mountaincar-zoo/data +125 -0
- DQN-mountaincar-zoo/policy.optimizer.pth +3 -0
- DQN-mountaincar-zoo/policy.pth +3 -0
- DQN-mountaincar-zoo/pytorch_variables.pth +3 -0
- DQN-mountaincar-zoo/system_info.txt +7 -0
- README.md +36 -0
- config.json +1 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
DQN-mountaincar-zoo.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f92c1f7d8b99d565c8eb461bc5c54d8346b34c94fc00b1d652e05313a94a6f4
|
3 |
+
size 1103790
|
DQN-mountaincar-zoo/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.3.0
|
DQN-mountaincar-zoo/data
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.dqn.policies",
|
6 |
+
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function DQNPolicy.__init__ at 0x7ff47da140d0>",
|
8 |
+
"_build": "<function DQNPolicy._build at 0x7ff47da14158>",
|
9 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x7ff47da141e0>",
|
10 |
+
"forward": "<function DQNPolicy.forward at 0x7ff47da14268>",
|
11 |
+
"_predict": "<function DQNPolicy._predict at 0x7ff47da142f0>",
|
12 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7ff47da14378>",
|
13 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x7ff47da14400>",
|
14 |
+
"__abstractmethods__": "frozenset()",
|
15 |
+
"_abc_registry": "<_weakrefset.WeakSet object at 0x7ff47da0ce48>",
|
16 |
+
"_abc_cache": "<_weakrefset.WeakSet object at 0x7ff47da0ce80>",
|
17 |
+
"_abc_negative_cache": "<_weakrefset.WeakSet object at 0x7ff47da0cef0>",
|
18 |
+
"_abc_negative_cache_version": 59
|
19 |
+
},
|
20 |
+
"verbose": 0,
|
21 |
+
"policy_kwargs": {
|
22 |
+
"net_arch": [
|
23 |
+
256,
|
24 |
+
256
|
25 |
+
]
|
26 |
+
},
|
27 |
+
"observation_space": {
|
28 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
29 |
+
":serialized:": "gASVjAEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsChZSMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwKFlGgLiUMImpmZvylcj72UdJRijARoaWdolGgTaBVLAIWUaBeHlFKUKEsBSwKFlGgLiUMImpkZPylcjz2UdJRijA1ib3VuZGVkX2JlbG93lGgTaBVLAIWUaBeHlFKUKEsBSwKFlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMCAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgTaBVLAIWUaBeHlFKUKEsBSwKFlGgriUMCAQGUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
30 |
+
"dtype": "float32",
|
31 |
+
"shape": [
|
32 |
+
2
|
33 |
+
],
|
34 |
+
"low": "[-1.2 -0.07]",
|
35 |
+
"high": "[0.6 0.07]",
|
36 |
+
"bounded_below": "[ True True]",
|
37 |
+
"bounded_above": "[ True True]",
|
38 |
+
"_np_random": null
|
39 |
+
},
|
40 |
+
"action_space": {
|
41 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
42 |
+
":serialized:": "gASVTAsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wFc2hhcGWUKYwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoFIwFc3RhdGWUfZQojANrZXmUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoCIwHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAU1wAoWUaAqMAnU0lImIh5RSlChLA2gOTk5OSv////9K/////0sAdJRiiULACQAAxUZCcQfhwQYqDfIWVWfQykQMYkwrkZ9wMWLKTI9qbgnitBbC1FFi36xNhpZxY19YplSGzykWi2eo5FIziPFW5a0So8F8JRYh/HLX1zlMCOqHV5BMbGhuqW5QoAVKs3jJKp00kif4Rhuu+RnaWCAjrzpAlUzsXBIEzkBdFDzos0eJQiVE7nGTInnd3fbDvn85/nP+WW8gVmJolPpfPEqGdq+VZkfrkwXO7S/fdqRPFiRVkjZFGHBNueKkAQXto+vbDHnZv99UrYS3+AvAEexE3nZ6EEJVDSYbZaiASEypVHGZSEOjKCwM0wNi1uBZTjR1hWO4zfRaly4rbKXZKHYoqTjQU31ajBa7Ybgb+fe1NHC9Qrpui3H6IY8B7PwnLvlYsubz5P2sWfzXgg4pwW9DzdQ2wCjbzMIC+47I3L2DJWyXjv6HTMsF95eIdXGPMZmSk3jvEZBSjLzKloWAOzPu51k7VDf93wYa/n07yUZRgv3vCTxhWSEoXFLdR+ZeZRxWRwE2ni1r4dyhnWFwnZnlsONa5idr/nEPxWp4M/PWe7D6h/eom/LEGKW9kx08RUtxtPMDi7qt9iDo9aKUxQYfufVX1gW46vzAGkhTYmskUPtUNk1nWY9Xdr/5i6erY2ZTQo04/AOYzKx3cGHtJHXczQXCM2+oMRHtUvquxNe9KulM19t5bSywTDJggLVQdohyfchsA6L7iCuBcmEQPaNAJrMuq41lxzCrfogfjBF3a/IQKStPhsbT1rRJY3D9LI5G3GbqmUaAh9ArAYCd/y/pHEWGkLb/3sIpLjGFsKKXKlyOXDEFoAyXpPoyf/iX8O+kSd6cs5OaZj2unQPlKR5zmKTokRjjsgL2dVlxejZ6BYb539iuZjotLCZFbdXa5/2QUbqAQeLfnB7O044rPQHQSnUkwN7zmfTUa+LbdgBV/TFrmifmguzFU+e/74HS2Yx/DrvKAxpvYRjSXpN0uAVoJskmKEcERMpg0NTdakw+wB12Bxq1mtt9USo/d5afUqROFD6GM9IjC3xuNMVyWzt6KsjcJFKDwQZh860GzxljeCiPffp71lGIyj59lqwU2Yms+f8isBDTH/OwHcoB9Ee88fRtfiERQ7KwSNuvdTQocMz/Y7JJMqM7cqTukWiXgxtBiUBEXaTQwNC50bVknzMEawlPt8rXXv336EN2cUkUmgV2tA51SpNsFO+86An0bcQ09gv/fVo5O8iIAL+PSSdvYMEIC+A+JIj+tV8P8Zf1uSE4y86N/ojzjkqwUqIz6XFKC77RUPSeCeVt2HmaeLBeBZ4H37oOaEPVKvHuI6AFt4d9LkB7vGqAXVMp5K0jFVHUz3RH2vY3gZXIFbZE9pb+XuClUZB6qAfYT5rLJZnsR0WiA6KuDc7dMnlwySquT5S1pCln2yCsdoRf0pr2UptE9ysxKbVorpnI16XR9MvFOQ1wTA449cAlzqM+U/lVPEG0jFLmj374ICQPmyo8HOe6gmkywQuR6DQA3ER4tDAWl6tCGzHv7nxJFtsrI0LoQ4VJo92U4fPWXmy5A0Y7Ht+I0hekmLcuCR1qVvqez6pR5pse+h+jkEQSFdepLiYnvIoG+6NqT+gk1p2VAGhkoZLj/9bn4zNMiYcpkYN7QumxTLbtC/VHiUJwuZXAIpteq1vJU5sNfHnaeB6SI0XVfLaLGMKYMKDxctxETDrW+/zim7dZacbe9kc9VRPTNw1zXfvv8881fzrjf5sI94lIYtkX63ahynciPdgIwAO9yYK6YH52+hl7zNFbCZRMb/VltAqsCYJGYRtS+cNYm22C7EL5/1G4WZmOsbC7UUJ7javIF10u4mq81pME/wzpH/1/Ds09GKjZ6LmNoQ1F+//4ZFgdUVFpbaZBswsMpHT056JI7dQSZCDqBrEUCCo8S8y2i6bseBnp9yMhSmDGWgtmGzd0cmnrmi5gauFkfpg2tO5Kv7HALBEdmzuGHzeVmGr8ZGmkypagzAWhxv3LPB+5rmKvh21FaOpNMmzYsSgnMwgJfVId62VLavSSPpLH47dtG0Ma6AWEsvtg5Dw5qsOznXyMe2RJmojff3/WGDaYlZWPzJEeK+bMUJZvtENY7vaErqi7/NSFbGGCnu9h5kaSdSRdVo7bc8PAX3FPQB4Kl3ijJZZUgXxfrTatzJ9NlilqebkGGRxBWYOjP1pxOD42CkC3ZzlGk52yNS63om/brVwRU8FQ1w2bOMQDOD7oD5h4mYkcK0BpK5mkBfiu8gY7azU9wRlv5b7Ay2Jgnsm7SkQDoH8lNzCYxU8/nZshCiI2/4pwpLAv5igtziOLNpoIP9Av2BY7Hy43vWb7mzgP6XqWgRdWCJ33jA1A4p2Mhb4INmDpD+R2kZTsPuhJzoJZAhhiXYIC6MmbfrjJGYu/pWblGfUB3Oc6BAqgWeuuvDMpYPHLTz1BsGEXHbGbxzx/l0WHu/nLN5VBg6+ZkKID4RANuFp8xberRdCpztEVnZSGLbZEYrFP18Ib54W8nIZX68TJ0utCpUK7rUqoxbrMKtKTdt3G9D+MjiJkei/RqsEJRzJ0uYh1iF63AuutsH5vrR+grUUsMl/e217eM0fE4iCaY7KYH5dJ1T/fM47CwJX2wkIVHkNVB6OCgwnSYg8yZXRdCnR55HZ323sloab1H/jvAu9Mopew+ar+32El/PuEH2Y2PqjZu9QQllNmzTVdEa60wRZP0XMYy7WHzVeSjC4UNKpE3y7aQS0CJwCHzrl+lknjYBrx3vCTePJJEonF+RjM7cJvsP0ksmnaSQxXmxrjwp3YcuSabi1tDKBNvsjTQ8j4ewXqs8JKli6fhgk+T1M+Sk/yHzxBRqykk6JEk3XWBtcR+LmWfMN4WrcbhDPvNMu8yH94DLejQdX8Vxq2bZhhQhdL0znYzRPl3zcSulZOo0b1V8TBLl84NrWK5dk3bJKE5S6UO7sFHuqbUAfG0ghqlLyDgV6BSmKi+RrqTmBxr5sov4L0isSMQxMYBJQcXITFTZdFhK4DOVSd6+TfNPbH2i6qj51B03P3kMwrWoMGGTfi3XIjN+JDLvdSBIP2odV1M18IkNgMBaC9k6PzTNDgnSVbioXk2b6LzF1+mdLF6GQ4wf+ezikWBLjNnAPd+PPcHTjyFtaMRVmOZmiqEFvU58MHw3i+21rCcurF4YeOZDH5NJg/OQI85v62gQoCcIURN5T4lOoi/yelJxEqCZAAEG+o6Ab6wL2bWG/hBDAkdwOtk+ubkU1Pmb4QE8YqdHSNz6KlioNqrkMPnjxivPq145JsYSsITt2P2m8Fslt8rvgC33j2YG+dHQhR6mFBRyyNlHSUYowDcG9zlE2eAXWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
|
43 |
+
"n": 3,
|
44 |
+
"shape": [],
|
45 |
+
"dtype": "int64",
|
46 |
+
"_np_random": "RandomState(MT19937)"
|
47 |
+
},
|
48 |
+
"n_envs": 1,
|
49 |
+
"num_timesteps": 110000,
|
50 |
+
"_total_timesteps": 120000.0,
|
51 |
+
"seed": null,
|
52 |
+
"action_noise": null,
|
53 |
+
"start_time": 1654972095.075665,
|
54 |
+
"learning_rate": 0.004,
|
55 |
+
"tensorboard_log": "./dqn_mountain_car_tensorboard/",
|
56 |
+
"lr_schedule": {
|
57 |
+
":type:": "<class 'function'>",
|
58 |
+
":serialized:": "gASVBQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxrL2hvbWUvYWdhcmNpYS9yZXBvcy9kZWVwLXJsLWNsYXNzL3VuaXQxL3VuaXQxL2xpYi9weXRob24zLjYvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGsvaG9tZS9hZ2FyY2lhL3JlcG9zL2RlZXAtcmwtY2xhc3MvdW5pdDEvdW5pdDEvbGliL3B5dGhvbjMuNi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/cGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
59 |
+
},
|
60 |
+
"_last_obs": {
|
61 |
+
":type:": "<class 'numpy.ndarray'>",
|
62 |
+
":serialized:": "gASVkgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMIwqgdv404Ez2UdJRiLg=="
|
63 |
+
},
|
64 |
+
"_last_episode_starts": {
|
65 |
+
":type:": "<class 'numpy.ndarray'>",
|
66 |
+
":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQGUdJRiLg=="
|
67 |
+
},
|
68 |
+
"_last_original_obs": {
|
69 |
+
":type:": "<class 'numpy.ndarray'>",
|
70 |
+
":serialized:": "gASVkgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMIStwmv3BICz2UdJRiLg=="
|
71 |
+
},
|
72 |
+
"_episode_num": 592,
|
73 |
+
"use_sde": false,
|
74 |
+
"sde_sample_freq": -1,
|
75 |
+
"_current_progress_remaining": 0.08334166666666665,
|
76 |
+
"ep_info_buffer": {
|
77 |
+
":type:": "<class 'collections.deque'>",
|
78 |
+
":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0BnAONedCmedX2UKGgGR8BYgAAAAAAAaAdLYmgIR0BnBr8cdYGMdX2UKGgGR8BhgAAAAAAAaAdLjGgIR0BnD1NJvo/zdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BnGuchC+lCdX2UKGgGR8BlgAAAAAAAaAdLrGgIR0BnJZIg/1QJdX2UKGgGR8BjIAAAAAAAaAdLmWgIR0BnLyWkadc0dX2UKGgGR8BnoAAAAAAAaAdLvWgIR0BnOx+KCQLedX2UKGgGR8BhYAAAAAAAaAdLi2gIR0BnQyPhhpg1dX2UKGgGR8BoIAAAAAAAaAdLwWgIR0BnTyO5rgwXdX2UKGgGR8BkAAAAAAAAaAdLoGgIR0BnWRYJVsDXdX2UKGgGR8BXwAAAAAAAaAdLX2gIR0BnXwBikO7QdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BnZbm6oVEedX2UKGgGR8BewAAAAAAAaAdLe2gIR0BnbYNZvDP4dX2UKGgGR8BkAAAAAAAAaAdLoGgIR0Bnd192HLzPdX2UKGgGR8BkgAAAAAAAaAdLpGgIR0BngRDst03gdX2UKGgGR8Bg4AAAAAAAaAdLh2gIR0Bniatmthd/dX2UKGgGR8BjIAAAAAAAaAdLmWgIR0BnkoT7EYO2dX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0BnnCkKu0TldX2UKGgGR8BlQAAAAAAAaAdLqmgIR0BnpsP+XJHRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bnsle2NNrTdX2UKGgGR8BgQAAAAAAAaAdLgmgIR0BnuobOu7pWdX2UKGgGR8BlYAAAAAAAaAdLq2gIR0BnxTGJemeldX2UKGgGR8BZAAAAAAAAaAdLZGgIR0BnywiX6ZYxdX2UKGgGR8BkwAAAAAAAaAdLpmgIR0Bn1XnbItDldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bn4ZOpKjBVdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0Bn601sLv1EdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0Bn9CmKqGUOdX2UKGgGR8BkYAAAAAAAaAdLo2gIR0Bn/vNxEORUdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0BoB+/336AOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BoFGuieumrdX2UKGgGR8BhQAAAAAAAaAdLimgIR0BoHGCCjDbbdX2UKGgGR8BgQAAAAAAAaAdLgmgIR0BoLksrd30PdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BoOlCkXUH6dX2UKGgGR8BfwAAAAAAAaAdLf2gIR0BoQf9pAUtadX2UKGgGR8BogAAAAAAAaAdLxGgIR0BoTZPIn0CjdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0BoV1KmKqGUdX2UKGgGR8BlYAAAAAAAaAdLq2gIR0BoYh7JGOMmdX2UKGgGR8Bg4AAAAAAAaAdLh2gIR0BoaffMwDeTdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0BocKQeV9ncdX2UKGgGR8BioAAAAAAAaAdLlWgIR0BoeWf9P1tgdX2UKGgGR8BlQAAAAAAAaAdLqmgIR0Bog9dVvMr3dX2UKGgGR8BjwAAAAAAAaAdLnmgIR0BojWC04R29dX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BolCNbTtsvdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BomtHvttygdX2UKGgGR8BgQAAAAAAAaAdLgmgIR0Boon/1g6U8dX2UKGgGR8BcgAAAAAAAaAdLcmgIR0BoqUmICU5ddX2UKGgGR8BXAAAAAAAAaAdLXGgIR0Boru0mdAgQdX2UKGgGR8BgIAAAAAAAaAdLgWgIR0BotpbD/EOzdX2UKGgGR8BiQAAAAAAAaAdLkmgIR0Bov2yRjjJddX2UKGgGR8BjoAAAAAAAaAdLnWgIR0BoyPDFZPl/dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0Boz3mV7hNudX2UKGgGR8BlIAAAAAAAaAdLqWgIR0Bo2TF4s3AEdX2UKGgGR8BlgAAAAAAAaAdLrGgIR0Bo5AHLRrrPdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0Bo6ppxm03PdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0Bo8yvJRwZPdX2UKGgGR8BjwAAAAAAAaAdLnmgIR0Bo/LrPdEb6dX2UKGgGR8BmQAAAAAAAaAdLsmgIR0BpB0nRb8m8dX2UKGgGR8BmwAAAAAAAaAdLtmgIR0BpEp5zHS4OdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0BpGVWOp84QdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0BpIhvWH1vmdX2UKGgGR8BigAAAAAAAaAdLlGgIR0BpK4XGff4zdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0BpNHbuc+aCdX2UKGgGR8BioAAAAAAAaAdLlWgIR0BpPlKCg9NfdX2UKGgGR8BkgAAAAAAAaAdLpGgIR0BpSBF3IMjNdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BpTuPmxMWXdX2UKGgGR8BmoAAAAAAAaAdLtWgIR0BpWYj6eoUBdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0BpYHlnyup0dX2UKGgGR8BagAAAAAAAaAdLamgIR0BpZ3fyf+S9dX2UKGgGR8BjIAAAAAAAaAdLmWgIR0BpcF6/qPfbdX2UKGgGR8BggAAAAAAAaAdLhGgIR0BpeWcMEzO5dX2UKGgGR8BiYAAAAAAAaAdLk2gIR0BpgqDZlFtsdX2UKGgGR8BlAAAAAAAAaAdLqGgIR0BpjW2mYSg5dX2UKGgGR8BjYAAAAAAAaAdLm2gIR0Bpl8nZ00WNdX2UKGgGR8BlYAAAAAAAaAdLq2gIR0Bponk1dgOSdX2UKGgGR8BfAAAAAAAAaAdLfGgIR0BpqXta6jFidX2UKGgGR8BeQAAAAAAAaAdLeWgIR0BpsSv3ai9JdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0BpuB8BuGbkdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0BpvufZmI0qdX2UKGgGR8BkQAAAAAAAaAdLomgIR0BpyMCkoF3ZdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0Bp0JyuIRAbdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0Bp1/arWAf/dX2UKGgGR8BmAAAAAAAAaAdLsGgIR0Bp40knkT6BdX2UKGgGR8BiQAAAAAAAaAdLkmgIR0Bp7GrOqvNedX2UKGgGR8BjQAAAAAAAaAdLmmgIR0Bp9yCcwxnGdX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0BqALSApazNdX2UKGgGR8BegAAAAAAAaAdLemgIR0BqCMy+HrQgdX2UKGgGR8BlgAAAAAAAaAdLrGgIR0BqEukk8ifQdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0BqGc+PikwfdX2UKGgGR8BjAAAAAAAAaAdLmGgIR0BqI4lWwNb1dX2UKGgGR8BmgAAAAAAAaAdLtGgIR0BqLhQrMC9zdX2UKGgGR8BmYAAAAAAAaAdLs2gIR0BqOKIi1RcedX2UKGgGR8BmAAAAAAAAaAdLsGgIR0BqQ1nEl3QldX2UKGgGR8BjoAAAAAAAaAdLnWgIR0BqTXoouwotdX2UKGgGR8BlQAAAAAAAaAdLqmgIR0BqWaNKh+OPdX2UKGgGR8BjIAAAAAAAaAdLmWgIR0BqYyp71Iy1dX2UKGgGR8BjQAAAAAAAaAdLmmgIR0BqbcIu5BkadX2UKGgGR8BZAAAAAAAAaAdLZGgIR0Bqc/KZDzAfdX2UKGgGR8BewAAAAAAAaAdLe2gIR0Bqe/zWf9P2dX2UKGgGR8BioAAAAAAAaAdLlWgIR0BqhOXkYGdJdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0BqjpyS3b22dWUu"
|
79 |
+
},
|
80 |
+
"ep_success_buffer": {
|
81 |
+
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
83 |
+
},
|
84 |
+
"_n_updates": 54496,
|
85 |
+
"buffer_size": 10000,
|
86 |
+
"batch_size": 128,
|
87 |
+
"learning_starts": 1000,
|
88 |
+
"tau": 1.0,
|
89 |
+
"gamma": 0.98,
|
90 |
+
"gradient_steps": 8,
|
91 |
+
"optimize_memory_usage": false,
|
92 |
+
"replay_buffer_class": {
|
93 |
+
":type:": "<class 'abc.ABCMeta'>",
|
94 |
+
":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
95 |
+
"__module__": "stable_baselines3.common.buffers",
|
96 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
97 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7ff47da5c2f0>",
|
98 |
+
"add": "<function ReplayBuffer.add at 0x7ff47da5c378>",
|
99 |
+
"sample": "<function ReplayBuffer.sample at 0x7ff47da5c400>",
|
100 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7ff47da5c488>",
|
101 |
+
"__abstractmethods__": "frozenset()",
|
102 |
+
"_abc_registry": "<_weakrefset.WeakSet object at 0x7ff47db41358>",
|
103 |
+
"_abc_cache": "<_weakrefset.WeakSet object at 0x7ff47db413c8>",
|
104 |
+
"_abc_negative_cache": "<_weakrefset.WeakSet object at 0x7ff47db41438>",
|
105 |
+
"_abc_negative_cache_version": 59
|
106 |
+
},
|
107 |
+
"replay_buffer_kwargs": {},
|
108 |
+
"remove_time_limit_termination": false,
|
109 |
+
"train_freq": {
|
110 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
111 |
+
":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLEGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
112 |
+
},
|
113 |
+
"actor": null,
|
114 |
+
"use_sde_at_warmup": false,
|
115 |
+
"exploration_initial_eps": 1.0,
|
116 |
+
"exploration_final_eps": 0.07,
|
117 |
+
"exploration_fraction": 0.2,
|
118 |
+
"target_update_interval": 600,
|
119 |
+
"max_grad_norm": 10,
|
120 |
+
"exploration_rate": 0.07,
|
121 |
+
"exploration_schedule": {
|
122 |
+
":type:": "<class 'function'>",
|
123 |
+
":serialized:": "gASVqQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGsvaG9tZS9hZ2FyY2lhL3JlcG9zL2RlZXAtcmwtY2xhc3MvdW5pdDEvdW5pdDEvbGliL3B5dGhvbjMuNi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS25DBgABDAEEApSMA2VuZJSMDGVuZF9mcmFjdGlvbpSMBXN0YXJ0lIeUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMay9ob21lL2FnYXJjaWEvcmVwb3MvZGVlcC1ybC1jbGFzcy91bml0MS91bml0MS9saWIvcHl0aG9uMy42L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB4pUpRoHilSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgkfZR9lChoGWgOjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAuMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoMHWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgajAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+x64UeuFHshZRSlGg4Rz/JmZmZmZmahZRSlGg4Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
124 |
+
}
|
125 |
+
}
|
DQN-mountaincar-zoo/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6af23a954c4154396137a15450f1fe9e12190d7e274d1a4637767bf8a662c71
|
3 |
+
size 541953
|
DQN-mountaincar-zoo/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:abf86c17bf44143207e48eb22f44845536963cd5c14e10b4247412accca544fe
|
3 |
+
size 542721
|
DQN-mountaincar-zoo/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
DQN-mountaincar-zoo/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-4.15.0-184-generic-x86_64-with-Ubuntu-18.04-bionic #194-Ubuntu SMP Thu Jun 2 18:54:48 UTC 2022
|
2 |
+
Python: 3.6.9
|
3 |
+
Stable-Baselines3: 1.3.0
|
4 |
+
PyTorch: 1.10.2+cu102
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.19.5
|
7 |
+
Gym: 0.19.0
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- MountainCar-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DQN
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -98.80 +/- 21.88
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: MountainCar-v0
|
20 |
+
type: MountainCar-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **DQN** Agent playing **MountainCar-v0**
|
24 |
+
This is a trained model of a **DQN** agent playing **MountainCar-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7ff47da140d0>", "_build": "<function DQNPolicy._build at 0x7ff47da14158>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7ff47da141e0>", "forward": "<function DQNPolicy.forward at 0x7ff47da14268>", "_predict": "<function DQNPolicy._predict at 0x7ff47da142f0>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7ff47da14378>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7ff47da14400>", "__abstractmethods__": "frozenset()", "_abc_registry": "<_weakrefset.WeakSet object at 0x7ff47da0ce48>", "_abc_cache": "<_weakrefset.WeakSet object at 0x7ff47da0ce80>", "_abc_negative_cache": "<_weakrefset.WeakSet object at 0x7ff47da0cef0>", "_abc_negative_cache_version": 59}, "verbose": 0, "policy_kwargs": {"net_arch": [256, 256]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVjAEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsChZSMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwKFlGgLiUMImpmZvylcj72UdJRijARoaWdolGgTaBVLAIWUaBeHlFKUKEsBSwKFlGgLiUMImpkZPylcjz2UdJRijA1ib3VuZGVkX2JlbG93lGgTaBVLAIWUaBeHlFKUKEsBSwKFlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMCAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgTaBVLAIWUaBeHlFKUKEsBSwKFlGgriUMCAQGUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVTAsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wFc2hhcGWUKYwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoFIwFc3RhdGWUfZQojANrZXmUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoCIwHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAU1wAoWUaAqMAnU0lImIh5RSlChLA2gOTk5OSv////9K/////0sAdJRiiULACQAAxUZCcQfhwQYqDfIWVWfQykQMYkwrkZ9wMWLKTI9qbgnitBbC1FFi36xNhpZxY19YplSGzykWi2eo5FIziPFW5a0So8F8JRYh/HLX1zlMCOqHV5BMbGhuqW5QoAVKs3jJKp00kif4Rhuu+RnaWCAjrzpAlUzsXBIEzkBdFDzos0eJQiVE7nGTInnd3fbDvn85/nP+WW8gVmJolPpfPEqGdq+VZkfrkwXO7S/fdqRPFiRVkjZFGHBNueKkAQXto+vbDHnZv99UrYS3+AvAEexE3nZ6EEJVDSYbZaiASEypVHGZSEOjKCwM0wNi1uBZTjR1hWO4zfRaly4rbKXZKHYoqTjQU31ajBa7Ybgb+fe1NHC9Qrpui3H6IY8B7PwnLvlYsubz5P2sWfzXgg4pwW9DzdQ2wCjbzMIC+47I3L2DJWyXjv6HTMsF95eIdXGPMZmSk3jvEZBSjLzKloWAOzPu51k7VDf93wYa/n07yUZRgv3vCTxhWSEoXFLdR+ZeZRxWRwE2ni1r4dyhnWFwnZnlsONa5idr/nEPxWp4M/PWe7D6h/eom/LEGKW9kx08RUtxtPMDi7qt9iDo9aKUxQYfufVX1gW46vzAGkhTYmskUPtUNk1nWY9Xdr/5i6erY2ZTQo04/AOYzKx3cGHtJHXczQXCM2+oMRHtUvquxNe9KulM19t5bSywTDJggLVQdohyfchsA6L7iCuBcmEQPaNAJrMuq41lxzCrfogfjBF3a/IQKStPhsbT1rRJY3D9LI5G3GbqmUaAh9ArAYCd/y/pHEWGkLb/3sIpLjGFsKKXKlyOXDEFoAyXpPoyf/iX8O+kSd6cs5OaZj2unQPlKR5zmKTokRjjsgL2dVlxejZ6BYb539iuZjotLCZFbdXa5/2QUbqAQeLfnB7O044rPQHQSnUkwN7zmfTUa+LbdgBV/TFrmifmguzFU+e/74HS2Yx/DrvKAxpvYRjSXpN0uAVoJskmKEcERMpg0NTdakw+wB12Bxq1mtt9USo/d5afUqROFD6GM9IjC3xuNMVyWzt6KsjcJFKDwQZh860GzxljeCiPffp71lGIyj59lqwU2Yms+f8isBDTH/OwHcoB9Ee88fRtfiERQ7KwSNuvdTQocMz/Y7JJMqM7cqTukWiXgxtBiUBEXaTQwNC50bVknzMEawlPt8rXXv336EN2cUkUmgV2tA51SpNsFO+86An0bcQ09gv/fVo5O8iIAL+PSSdvYMEIC+A+JIj+tV8P8Zf1uSE4y86N/ojzjkqwUqIz6XFKC77RUPSeCeVt2HmaeLBeBZ4H37oOaEPVKvHuI6AFt4d9LkB7vGqAXVMp5K0jFVHUz3RH2vY3gZXIFbZE9pb+XuClUZB6qAfYT5rLJZnsR0WiA6KuDc7dMnlwySquT5S1pCln2yCsdoRf0pr2UptE9ysxKbVorpnI16XR9MvFOQ1wTA449cAlzqM+U/lVPEG0jFLmj374ICQPmyo8HOe6gmkywQuR6DQA3ER4tDAWl6tCGzHv7nxJFtsrI0LoQ4VJo92U4fPWXmy5A0Y7Ht+I0hekmLcuCR1qVvqez6pR5pse+h+jkEQSFdepLiYnvIoG+6NqT+gk1p2VAGhkoZLj/9bn4zNMiYcpkYN7QumxTLbtC/VHiUJwuZXAIpteq1vJU5sNfHnaeB6SI0XVfLaLGMKYMKDxctxETDrW+/zim7dZacbe9kc9VRPTNw1zXfvv8881fzrjf5sI94lIYtkX63ahynciPdgIwAO9yYK6YH52+hl7zNFbCZRMb/VltAqsCYJGYRtS+cNYm22C7EL5/1G4WZmOsbC7UUJ7javIF10u4mq81pME/wzpH/1/Ds09GKjZ6LmNoQ1F+//4ZFgdUVFpbaZBswsMpHT056JI7dQSZCDqBrEUCCo8S8y2i6bseBnp9yMhSmDGWgtmGzd0cmnrmi5gauFkfpg2tO5Kv7HALBEdmzuGHzeVmGr8ZGmkypagzAWhxv3LPB+5rmKvh21FaOpNMmzYsSgnMwgJfVId62VLavSSPpLH47dtG0Ma6AWEsvtg5Dw5qsOznXyMe2RJmojff3/WGDaYlZWPzJEeK+bMUJZvtENY7vaErqi7/NSFbGGCnu9h5kaSdSRdVo7bc8PAX3FPQB4Kl3ijJZZUgXxfrTatzJ9NlilqebkGGRxBWYOjP1pxOD42CkC3ZzlGk52yNS63om/brVwRU8FQ1w2bOMQDOD7oD5h4mYkcK0BpK5mkBfiu8gY7azU9wRlv5b7Ay2Jgnsm7SkQDoH8lNzCYxU8/nZshCiI2/4pwpLAv5igtziOLNpoIP9Av2BY7Hy43vWb7mzgP6XqWgRdWCJ33jA1A4p2Mhb4INmDpD+R2kZTsPuhJzoJZAhhiXYIC6MmbfrjJGYu/pWblGfUB3Oc6BAqgWeuuvDMpYPHLTz1BsGEXHbGbxzx/l0WHu/nLN5VBg6+ZkKID4RANuFp8xberRdCpztEVnZSGLbZEYrFP18Ib54W8nIZX68TJ0utCpUK7rUqoxbrMKtKTdt3G9D+MjiJkei/RqsEJRzJ0uYh1iF63AuutsH5vrR+grUUsMl/e217eM0fE4iCaY7KYH5dJ1T/fM47CwJX2wkIVHkNVB6OCgwnSYg8yZXRdCnR55HZ323sloab1H/jvAu9Mopew+ar+32El/PuEH2Y2PqjZu9QQllNmzTVdEa60wRZP0XMYy7WHzVeSjC4UNKpE3y7aQS0CJwCHzrl+lknjYBrx3vCTePJJEonF+RjM7cJvsP0ksmnaSQxXmxrjwp3YcuSabi1tDKBNvsjTQ8j4ewXqs8JKli6fhgk+T1M+Sk/yHzxBRqykk6JEk3XWBtcR+LmWfMN4WrcbhDPvNMu8yH94DLejQdX8Vxq2bZhhQhdL0znYzRPl3zcSulZOo0b1V8TBLl84NrWK5dk3bJKE5S6UO7sFHuqbUAfG0ghqlLyDgV6BSmKi+RrqTmBxr5sov4L0isSMQxMYBJQcXITFTZdFhK4DOVSd6+TfNPbH2i6qj51B03P3kMwrWoMGGTfi3XIjN+JDLvdSBIP2odV1M18IkNgMBaC9k6PzTNDgnSVbioXk2b6LzF1+mdLF6GQ4wf+ezikWBLjNnAPd+PPcHTjyFtaMRVmOZmiqEFvU58MHw3i+21rCcurF4YeOZDH5NJg/OQI85v62gQoCcIURN5T4lOoi/yelJxEqCZAAEG+o6Ab6wL2bWG/hBDAkdwOtk+ubkU1Pmb4QE8YqdHSNz6KlioNqrkMPnjxivPq145JsYSsITt2P2m8Fslt8rvgC33j2YG+dHQhR6mFBRyyNlHSUYowDcG9zlE2eAXWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 3, "shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 110000, "_total_timesteps": 120000.0, "seed": null, "action_noise": null, "start_time": 1654972095.075665, "learning_rate": 0.004, "tensorboard_log": "./dqn_mountain_car_tensorboard/", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVBQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxrL2hvbWUvYWdhcmNpYS9yZXBvcy9kZWVwLXJsLWNsYXNzL3VuaXQxL3VuaXQxL2xpYi9weXRob24zLjYvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGsvaG9tZS9hZ2FyY2lhL3JlcG9zL2RlZXAtcmwtY2xhc3MvdW5pdDEvdW5pdDEvbGliL3B5dGhvbjMuNi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/cGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVkgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMIwqgdv404Ez2UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVkgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMIStwmv3BICz2UdJRiLg=="}, "_episode_num": 592, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.08334166666666665, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0BnAONedCmedX2UKGgGR8BYgAAAAAAAaAdLYmgIR0BnBr8cdYGMdX2UKGgGR8BhgAAAAAAAaAdLjGgIR0BnD1NJvo/zdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BnGuchC+lCdX2UKGgGR8BlgAAAAAAAaAdLrGgIR0BnJZIg/1QJdX2UKGgGR8BjIAAAAAAAaAdLmWgIR0BnLyWkadc0dX2UKGgGR8BnoAAAAAAAaAdLvWgIR0BnOx+KCQLedX2UKGgGR8BhYAAAAAAAaAdLi2gIR0BnQyPhhpg1dX2UKGgGR8BoIAAAAAAAaAdLwWgIR0BnTyO5rgwXdX2UKGgGR8BkAAAAAAAAaAdLoGgIR0BnWRYJVsDXdX2UKGgGR8BXwAAAAAAAaAdLX2gIR0BnXwBikO7QdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BnZbm6oVEedX2UKGgGR8BewAAAAAAAaAdLe2gIR0BnbYNZvDP4dX2UKGgGR8BkAAAAAAAAaAdLoGgIR0Bnd192HLzPdX2UKGgGR8BkgAAAAAAAaAdLpGgIR0BngRDst03gdX2UKGgGR8Bg4AAAAAAAaAdLh2gIR0Bniatmthd/dX2UKGgGR8BjIAAAAAAAaAdLmWgIR0BnkoT7EYO2dX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0BnnCkKu0TldX2UKGgGR8BlQAAAAAAAaAdLqmgIR0BnpsP+XJHRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bnsle2NNrTdX2UKGgGR8BgQAAAAAAAaAdLgmgIR0BnuobOu7pWdX2UKGgGR8BlYAAAAAAAaAdLq2gIR0BnxTGJemeldX2UKGgGR8BZAAAAAAAAaAdLZGgIR0BnywiX6ZYxdX2UKGgGR8BkwAAAAAAAaAdLpmgIR0Bn1XnbItDldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bn4ZOpKjBVdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0Bn601sLv1EdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0Bn9CmKqGUOdX2UKGgGR8BkYAAAAAAAaAdLo2gIR0Bn/vNxEORUdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0BoB+/336AOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BoFGuieumrdX2UKGgGR8BhQAAAAAAAaAdLimgIR0BoHGCCjDbbdX2UKGgGR8BgQAAAAAAAaAdLgmgIR0BoLksrd30PdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BoOlCkXUH6dX2UKGgGR8BfwAAAAAAAaAdLf2gIR0BoQf9pAUtadX2UKGgGR8BogAAAAAAAaAdLxGgIR0BoTZPIn0CjdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0BoV1KmKqGUdX2UKGgGR8BlYAAAAAAAaAdLq2gIR0BoYh7JGOMmdX2UKGgGR8Bg4AAAAAAAaAdLh2gIR0BoaffMwDeTdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0BocKQeV9ncdX2UKGgGR8BioAAAAAAAaAdLlWgIR0BoeWf9P1tgdX2UKGgGR8BlQAAAAAAAaAdLqmgIR0Bog9dVvMr3dX2UKGgGR8BjwAAAAAAAaAdLnmgIR0BojWC04R29dX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BolCNbTtsvdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BomtHvttygdX2UKGgGR8BgQAAAAAAAaAdLgmgIR0Boon/1g6U8dX2UKGgGR8BcgAAAAAAAaAdLcmgIR0BoqUmICU5ddX2UKGgGR8BXAAAAAAAAaAdLXGgIR0Boru0mdAgQdX2UKGgGR8BgIAAAAAAAaAdLgWgIR0BotpbD/EOzdX2UKGgGR8BiQAAAAAAAaAdLkmgIR0Bov2yRjjJddX2UKGgGR8BjoAAAAAAAaAdLnWgIR0BoyPDFZPl/dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0Boz3mV7hNudX2UKGgGR8BlIAAAAAAAaAdLqWgIR0Bo2TF4s3AEdX2UKGgGR8BlgAAAAAAAaAdLrGgIR0Bo5AHLRrrPdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0Bo6ppxm03PdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0Bo8yvJRwZPdX2UKGgGR8BjwAAAAAAAaAdLnmgIR0Bo/LrPdEb6dX2UKGgGR8BmQAAAAAAAaAdLsmgIR0BpB0nRb8m8dX2UKGgGR8BmwAAAAAAAaAdLtmgIR0BpEp5zHS4OdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0BpGVWOp84QdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0BpIhvWH1vmdX2UKGgGR8BigAAAAAAAaAdLlGgIR0BpK4XGff4zdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0BpNHbuc+aCdX2UKGgGR8BioAAAAAAAaAdLlWgIR0BpPlKCg9NfdX2UKGgGR8BkgAAAAAAAaAdLpGgIR0BpSBF3IMjNdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BpTuPmxMWXdX2UKGgGR8BmoAAAAAAAaAdLtWgIR0BpWYj6eoUBdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0BpYHlnyup0dX2UKGgGR8BagAAAAAAAaAdLamgIR0BpZ3fyf+S9dX2UKGgGR8BjIAAAAAAAaAdLmWgIR0BpcF6/qPfbdX2UKGgGR8BggAAAAAAAaAdLhGgIR0BpeWcMEzO5dX2UKGgGR8BiYAAAAAAAaAdLk2gIR0BpgqDZlFtsdX2UKGgGR8BlAAAAAAAAaAdLqGgIR0BpjW2mYSg5dX2UKGgGR8BjYAAAAAAAaAdLm2gIR0Bpl8nZ00WNdX2UKGgGR8BlYAAAAAAAaAdLq2gIR0Bponk1dgOSdX2UKGgGR8BfAAAAAAAAaAdLfGgIR0BpqXta6jFidX2UKGgGR8BeQAAAAAAAaAdLeWgIR0BpsSv3ai9JdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0BpuB8BuGbkdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0BpvufZmI0qdX2UKGgGR8BkQAAAAAAAaAdLomgIR0BpyMCkoF3ZdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0Bp0JyuIRAbdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0Bp1/arWAf/dX2UKGgGR8BmAAAAAAAAaAdLsGgIR0Bp40knkT6BdX2UKGgGR8BiQAAAAAAAaAdLkmgIR0Bp7GrOqvNedX2UKGgGR8BjQAAAAAAAaAdLmmgIR0Bp9yCcwxnGdX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0BqALSApazNdX2UKGgGR8BegAAAAAAAaAdLemgIR0BqCMy+HrQgdX2UKGgGR8BlgAAAAAAAaAdLrGgIR0BqEukk8ifQdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0BqGc+PikwfdX2UKGgGR8BjAAAAAAAAaAdLmGgIR0BqI4lWwNb1dX2UKGgGR8BmgAAAAAAAaAdLtGgIR0BqLhQrMC9zdX2UKGgGR8BmYAAAAAAAaAdLs2gIR0BqOKIi1RcedX2UKGgGR8BmAAAAAAAAaAdLsGgIR0BqQ1nEl3QldX2UKGgGR8BjoAAAAAAAaAdLnWgIR0BqTXoouwotdX2UKGgGR8BlQAAAAAAAaAdLqmgIR0BqWaNKh+OPdX2UKGgGR8BjIAAAAAAAaAdLmWgIR0BqYyp71Iy1dX2UKGgGR8BjQAAAAAAAaAdLmmgIR0BqbcIu5BkadX2UKGgGR8BZAAAAAAAAaAdLZGgIR0Bqc/KZDzAfdX2UKGgGR8BewAAAAAAAaAdLe2gIR0Bqe/zWf9P2dX2UKGgGR8BioAAAAAAAaAdLlWgIR0BqhOXkYGdJdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0BqjpyS3b22dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 54496, "buffer_size": 10000, "batch_size": 128, "learning_starts": 1000, "tau": 1.0, "gamma": 0.98, "gradient_steps": 8, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7ff47da5c2f0>", "add": "<function ReplayBuffer.add at 0x7ff47da5c378>", "sample": "<function ReplayBuffer.sample at 0x7ff47da5c400>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7ff47da5c488>", "__abstractmethods__": "frozenset()", "_abc_registry": "<_weakrefset.WeakSet object at 0x7ff47db41358>", "_abc_cache": "<_weakrefset.WeakSet object at 0x7ff47db413c8>", "_abc_negative_cache": "<_weakrefset.WeakSet object at 0x7ff47db41438>", "_abc_negative_cache_version": 59}, "replay_buffer_kwargs": {}, "remove_time_limit_termination": false, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLEGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.07, "exploration_fraction": 0.2, "target_update_interval": 600, "max_grad_norm": 10, "exploration_rate": 0.07, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVqQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGsvaG9tZS9hZ2FyY2lhL3JlcG9zL2RlZXAtcmwtY2xhc3MvdW5pdDEvdW5pdDEvbGliL3B5dGhvbjMuNi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS25DBgABDAEEApSMA2VuZJSMDGVuZF9mcmFjdGlvbpSMBXN0YXJ0lIeUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMay9ob21lL2FnYXJjaWEvcmVwb3MvZGVlcC1ybC1jbGFzcy91bml0MS91bml0MS9saWIvcHl0aG9uMy42L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB4pUpRoHilSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgkfZR9lChoGWgOjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAuMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoMHWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgajAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+x64UeuFHshZRSlGg4Rz/JmZmZmZmahZRSlGg4Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-4.15.0-184-generic-x86_64-with-Ubuntu-18.04-bionic #194-Ubuntu SMP Thu Jun 2 18:54:48 UTC 2022", "Python": "3.6.9", "Stable-Baselines3": "1.3.0", "PyTorch": "1.10.2+cu102", "GPU Enabled": "True", "Numpy": "1.19.5", "Gym": "0.19.0"}}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -98.8, "std_reward": 21.876014262200506, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-11T20:38:26.547496"}
|