DQN trained with rl-baselines3-zoo.
Browse files- .gitattributes +1 -0
- DQN-mountaincar-zoo.zip +3 -0
- DQN-mountaincar-zoo/_stable_baselines3_version +1 -0
- DQN-mountaincar-zoo/data +128 -0
- DQN-mountaincar-zoo/policy.optimizer.pth +3 -0
- DQN-mountaincar-zoo/policy.pth +3 -0
- DQN-mountaincar-zoo/pytorch_variables.pth +3 -0
- DQN-mountaincar-zoo/system_info.txt +7 -0
- README.md +36 -0
- config.json +1 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
DQN-mountaincar-zoo.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:085d64ef101be7f1bd4dbdb03feb92700a2a48ec553af958d993d64568346347
|
3 |
+
size 1104913
|
DQN-mountaincar-zoo/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.3.0
|
DQN-mountaincar-zoo/data
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.dqn.policies",
|
6 |
+
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function DQNPolicy.__init__ at 0x7ff47da140d0>",
|
8 |
+
"_build": "<function DQNPolicy._build at 0x7ff47da14158>",
|
9 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x7ff47da141e0>",
|
10 |
+
"forward": "<function DQNPolicy.forward at 0x7ff47da14268>",
|
11 |
+
"_predict": "<function DQNPolicy._predict at 0x7ff47da142f0>",
|
12 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7ff47da14378>",
|
13 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x7ff47da14400>",
|
14 |
+
"__abstractmethods__": "frozenset()",
|
15 |
+
"_abc_registry": "<_weakrefset.WeakSet object at 0x7ff47da0ce48>",
|
16 |
+
"_abc_cache": "<_weakrefset.WeakSet object at 0x7ff47da0ce80>",
|
17 |
+
"_abc_negative_cache": "<_weakrefset.WeakSet object at 0x7ff47da0cef0>",
|
18 |
+
"_abc_negative_cache_version": 59
|
19 |
+
},
|
20 |
+
"verbose": 1,
|
21 |
+
"policy_kwargs": {
|
22 |
+
"net_arch": [
|
23 |
+
256,
|
24 |
+
256
|
25 |
+
]
|
26 |
+
},
|
27 |
+
"observation_space": {
|
28 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
29 |
+
":serialized:": "gASVjAEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsChZSMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwKFlGgLiUMImpmZvylcj72UdJRijARoaWdolGgTaBVLAIWUaBeHlFKUKEsBSwKFlGgLiUMImpkZPylcjz2UdJRijA1ib3VuZGVkX2JlbG93lGgTaBVLAIWUaBeHlFKUKEsBSwKFlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMCAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgTaBVLAIWUaBeHlFKUKEsBSwKFlGgriUMCAQGUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
30 |
+
"dtype": "float32",
|
31 |
+
"shape": [
|
32 |
+
2
|
33 |
+
],
|
34 |
+
"low": "[-1.2 -0.07]",
|
35 |
+
"high": "[0.6 0.07]",
|
36 |
+
"bounded_below": "[ True True]",
|
37 |
+
"bounded_above": "[ True True]",
|
38 |
+
"_np_random": null
|
39 |
+
},
|
40 |
+
"action_space": {
|
41 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
42 |
+
":serialized:": "gASVTAsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wFc2hhcGWUKYwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoFIwFc3RhdGWUfZQojANrZXmUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoCIwHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAU1wAoWUaAqMAnU0lImIh5RSlChLA2gOTk5OSv////9K/////0sAdJRiiULACQAAAAAAgPS6F4OTt7Zgxw/oaqjV9IojLnzI5vRvdUZpXqZorO2VdYr8xz5aBoRrWMCMbGM+u3Ep5AEeLKDSW8lDCMRRJMnOd/1iahjN1MjrfEsTx3DzAiQsQAOpgLVw1oGHoCtqu5bVbloQpHnTf+v9XKfZUJ3tJ3q/boly/xcFmPSYFtsLrM4ygRKd5c8s6KalMpqMMqjnte1RHSqVa/1o+nMXEnNZWt5F0Kfb38WD1SmwyM1glZgt2AWe603rBCRA1pN7kdZN4gizBqGGagaGn/LZvSNqFLhEYMXRU41UsEmPbXtkHYbCXU94DyITaVDwlsbcuWnKCU28/Bpmx89S9BFoZS1yvQEG5rXiS+PJSe3/IYEcX5zlzD8Nb7mDAZ6tiCInDG2jgi9aQsDDerp3xtf96XYpel6ipTeDWGI0d2dye+PFb3IVwQv4I/cCde4KEQa10Sh2iOAy8f7E2OLIAamGQJGFwYuPcvY27e1r+tBrw4hLqtKVbrI4r2iglaPGQdcs43cEhyyfUYDwuov3A1owlkhWnKFgAYs/bav4XS+wmzmd7O4Kc4hqOt6Envbb8j9XUnbmiO5DuR3IpZCY5H3Tsxsl7cu4Q59b7BXBHYuWNEZv6+Mil4Jn4AtfSyWBhRwLFJB4kyrfzzlvWqzkx5pBgvNKJgEDP2Ah3idrmStaTYL+TxqQPTAC2of7fINNPkWQcUEsJadsJ/PTrfvBGyfTOqRcpSszq4lZmxm7spJXJtA1Bz5VaWarETyrdVNmxM6q4xKQVH9vH5oIBqEwA9b1q4OLF5ZieY7KdwUcLAQBODjurqpEV/9rEEjSS4BkjcMUvlxLU9O/ZTtaebksdKcH7YqsxL9PLMsZ7x0drb0urmjmmAaNVyaL+szxszshBVG0E1XE+1PdpDnkhl2o/HQPvsZMEMEPOSzhgdeQFC9nX2ynF4l7/U0keekREZOI6eRUe4VCxb+7xMPtjJR/7wPFGpvrzIXvniYUbZel7gthVh3J55Z/PmZWieBUSr47Yv4mrN0N6+RQRDEyqtfi9olwi3RFVH/MNvMAHDHI9p/VFJy6PrSyz0F48YAnSRQ9Z2TPa6j20z1UTfTkWidnDAUFSg+vyRPljkIhsqCZCFbMFu0qLZg5xGX98EwdqvmII1bpVF5vwObXjxXJ1yYZ9NJBg+h5k+uX+E9fy/U8SADGGQsFoAaT/LnFn38TSb2J3Yrs6nBsx3NT6eMbUDdwictHWkRgdjv+m/r/qnzKqRdV5rC6QKPO8/+nNfXlh7q07xjV3a2lKP8Un4vRLohy24jP87DyHO+bMxhlq55hFSSvXyYbK9KNd112wzvA4J47lyyLsB+B6zVyQlRyjAqItv0PXUrPmDE7zwQ18EirhGPQlmvxNERjjO3Fha/PI1CWyt4ZuF6y+kOpeuPuo9dArbdD/pid0zv09O9GMTivXd+LNAUY3zwOjrD/kPoBYjq6IXoL9c6ClABb/J15qN0J7ZkCDpyJ1e1xg189xihMVvcGchPysWoZxpPhaXv3ucp9I8yiO7I40R8JVOaUh2+gYRFolcMrerh9nGdBY1Opkx2EEgmTiqanPxSiX83IItfhrjIMg1dviRub7DkBirp8OYJZn7TXajy+R5ovSFDClbFOmqmtPubQoFGS2thmGF1SIClXzUIwnZ6/YBX38QZF3W+Wh6JVimsm67vTqf9GnFOmfg2Nl/4cHCZ9aMvFHvJ+a2NxWiZGK0edqJpG8syeUqWjp4MP/+LUDJjLBXm7/HZehch9DsDPljq5jF6PybJCzOThhXAGFWeD2X94ipjoA4vCp00NImArx+V/3p3gFDR+cu74w2JQxEHhDaLydX/HaUg+BoUT1zy36FJ+/OKju1jmk/8JeVo4k7WUXu84PSajWjutuCSuVYCrAUrm7tPg8GUtBB/4UWMdTBi3qAHGjAs/MXkNmovOXef8x8PgZZnpWoVkwL4gVlukhig4fkX1F57rqaHzMmVi74J+pgh2SFH8ylewQDqe+hl2iIVbuBFAZ7djKzeLkwM64SeRUNCBVNhgo03f10hcMq/aUdr7lzh9e7xX7u7I6kXujna5YiukUSN9inmt6ROj2INqE0WtEHvStK1iug5InKbx82+X1ZTomrRdaWhRnkFig9IX/PBHIRwvI9BFWIFEf+rgUqIG8Ia/tjFIRNp+l7pn24M/w01nyWV0Sk2ZIW/0pAZC9mEftP5ej60/lgHmaqE2IbyhptjIWJBay804IDW2WYFHFRO+h7LJx9lh079NECdQ+AwckqWfGauh4ixulxXG79zo2jjKXRrRCsNG05bfywI5fR6UKeiPBrEszh05E2ERw8PMzhNozPFJ2zoeHjRCdmxP2r2PJlejJnX6qEd6bbK3dz665brhlogcGOjHcUrRQsZImy+NdB3aQDPcxbr9Vs/IrKjoRxGcLyAaRMvwFBuJeEFhp1UOA/inJAEqYvCgqud0Ui9g+ieTVSv6dAf8Z0qmnFST+2V+Jga2UDxAMOEYKKl15vTRpq1GLbjxBhDoOoBmMmScUh1RTqi7LpKMK9v57T9U4lqNOuku971QvDVL3cO+fMFqRltyY+XxenbESmle5yS5YkKdtS4OmL73aQyCnQluSV4d2Jo6e3j6mLKD7TQOIBVRpxd6z3GfAboN4FPHZdzww/PD1lU22Jp9v5rJWzOxBXyvPZtrv3apj5jIuRCUrSj5/KkKCVLCvHk+sxowW37zfCdqLpVhQgerCt+eSwb3HAvKisuRJEkwdGUWE3Pw2pW1vNOHCsLsIWLytmmSMhF+XGXIHtmoRAPd6D4NJ52p1MElf933Ty2QtUAqypEgdUkkbPd3LXJXmYkEdgdTEWRDNzLLPzJxgbwk+5voikuE0e0ac28X2aPFFr8uF4sUygEFvWAWJ7ImMRlTujpX52KlyJG5RafL0p9yo/ks8gjn28WdxiUDoZl+edqGTv8D2XJ48pErHp73ysmsK40SbrqdUf1q/3ppV2Xy6S41I9kWw1vFj3L7WV/thuAd1sKdCb+MwhCzZ5eOwkyRZgeBo6yDwJOTQOQrxmlwTaYLhW2S2HvKz9rt0zubIxa6S4IuQZzwPSf4bI0owqueTXL1ML57C1hbvYj/JWDQmWC3PhCEvOniC5bL9iHRGUEKdon8bqrj7bz2mUDEhIKEnDTPD1Ed3mCOpAYm0W0chmL0l1OpXu51luzMSwR8ETqSef6fWpS2eUVO0c51JAkge/AurokwjZ7BtsrMHaP93iVhU7K98xS/E5ebA3mOfnWtBerdJzHOLgN10eYM7BnhLrtRAdNV47TgCl7ZJXBdIfNMlHSUYowDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
|
43 |
+
"n": 3,
|
44 |
+
"shape": [],
|
45 |
+
"dtype": "int64",
|
46 |
+
"_np_random": "RandomState(MT19937)"
|
47 |
+
},
|
48 |
+
"n_envs": 1,
|
49 |
+
"num_timesteps": 120000,
|
50 |
+
"_total_timesteps": 120000,
|
51 |
+
"seed": 4128998006,
|
52 |
+
"action_noise": null,
|
53 |
+
"start_time": 1654632160.5571954,
|
54 |
+
"learning_rate": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gASVBQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxrL2hvbWUvYWdhcmNpYS9yZXBvcy9kZWVwLXJsLWNsYXNzL3VuaXQxL3VuaXQxL2xpYi9weXRob24zLjYvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGsvaG9tZS9hZ2FyY2lhL3JlcG9zL2RlZXAtcmwtY2xhc3MvdW5pdDEvdW5pdDEvbGliL3B5dGhvbjMuNi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/cGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"tensorboard_log": "mountaincar_zoo/MountainCar-v0",
|
59 |
+
"lr_schedule": {
|
60 |
+
":type:": "<class 'function'>",
|
61 |
+
":serialized:": "gASVBQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxrL2hvbWUvYWdhcmNpYS9yZXBvcy9kZWVwLXJsLWNsYXNzL3VuaXQxL3VuaXQxL2xpYi9weXRob24zLjYvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGsvaG9tZS9hZ2FyY2lhL3JlcG9zL2RlZXAtcmwtY2xhc3MvdW5pdDEvdW5pdDEvbGliL3B5dGhvbjMuNi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/cGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
62 |
+
},
|
63 |
+
"_last_obs": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gASVkgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMIIshJvxwL4byUdJRiLg=="
|
66 |
+
},
|
67 |
+
"_last_episode_starts": {
|
68 |
+
":type:": "<class 'numpy.ndarray'>",
|
69 |
+
":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQGUdJRiLg=="
|
70 |
+
},
|
71 |
+
"_last_original_obs": {
|
72 |
+
":type:": "<class 'numpy.ndarray'>",
|
73 |
+
":serialized:": "gASVkgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMIyb9Cvxc55ryUdJRiLg=="
|
74 |
+
},
|
75 |
+
"_episode_num": 768,
|
76 |
+
"use_sde": false,
|
77 |
+
"sde_sample_freq": -1,
|
78 |
+
"_current_progress_remaining": 8.333333333387927e-06,
|
79 |
+
"ep_info_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFhAAAAAAACMAWyUS2GMAXSUR0BpSIEhaC+UdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0BpTpZW7voedX2UKGgGR8BhgAAAAAAAaAdLjGgIR0BpV4xFiKBNdX2UKGgGR8BewAAAAAAAaAdLe2gIR0BpX3z4DcM3dX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BpZmzD4xk/dX2UKGgGR8BZwAAAAAAAaAdLZ2gIR0BpbJJ2+wkgdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0Bpc0GNaQmvdX2UKGgGR8BfAAAAAAAAaAdLfGgIR0BpeW+GoJiRdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0Bpf2hf0EowdX2UKGgGR8BkoAAAAAAAaAdLpWgIR0BpiBqbjLjhdX2UKGgGR8BgAAAAAAAAaAdLgGgIR0BpjklqrR0EdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0Bpk7Fl05lwdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0BpmXHeaa1DdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0Bpn2FWXC0odX2UKGgGR8BiAAAAAAAAaAdLkGgIR0BpqDs0HhS+dX2UKGgGR8BdwAAAAAAAaAdLd2gIR0Bpr+hwl0HRdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BpttgSeyzHdX2UKGgGR8BioAAAAAAAaAdLlWgIR0Bpv7PnjhkzdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0BpxooAn2IwdX2UKGgGR8BewAAAAAAAaAdLe2gIR0Bpzl1uBMBZdX2UKGgGR8BfwAAAAAAAaAdLf2gIR0Bp1k384xUOdX2UKGgGR8BaAAAAAAAAaAdLaGgIR0Bp3FayKNyYdX2UKGgGR8BgYAAAAAAAaAdLg2gIR0Bp5RigCfYjdX2UKGgGR8BegAAAAAAAaAdLemgIR0Bp8/Zbpu/DdX2UKGgGR8BfgAAAAAAAaAdLfmgIR0Bp+5ClabF1dX2UKGgGR8BigAAAAAAAaAdLlGgIR0BqBHRG+bmVdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0BqDAXXRPXTdX2UKGgGR8BfQAAAAAAAaAdLfWgIR0BqE8zuWrwOdX2UKGgGR8BiAAAAAAAAaAdLkGgIR0BqHMN+b3GodX2UKGgGR8BgQAAAAAAAaAdLgmgIR0BqJNZRsMy8dX2UKGgGR8BiQAAAAAAAaAdLkmgIR0BqLa6cy31BdX2UKGgGR8BdgAAAAAAAaAdLdmgIR0BqNMTcqOLjdX2UKGgGR8Bh4AAAAAAAaAdLj2gIR0BqPaVrylN2dX2UKGgGR8BfwAAAAAAAaAdLf2gIR0BqRaG8EmpmdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0BqTWDSPU8WdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0BqVE/+sHSndX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BqW0gbIcR2dX2UKGgGR8BhQAAAAAAAaAdLimgIR0BqY2JBPbfxdX2UKGgGR8BfQAAAAAAAaAdLfWgIR0BqazG7z06HdX2UKGgGR8BgQAAAAAAAaAdLgmgIR0BqczeoDPnkdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0Bqejst03fidX2UKGgGR8BewAAAAAAAaAdLe2gIR0BqgfP5YYBOdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BqiNRekYXPdX2UKGgGR8BYAAAAAAAAaAdLYGgIR0Bqjsfkmx+sdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0BqlpK3/givdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BqnWG9HtngdX2UKGgGR8BegAAAAAAAaAdLemgIR0BqpF4xDb8FdX2UKGgGR8BewAAAAAAAaAdLe2gIR0BqrCeVcD8tdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0BqsyDM/yG0dX2UKGgGR8BigAAAAAAAaAdLlGgIR0BqvMLKFIuodX2UKGgGR8BggAAAAAAAaAdLhGgIR0BqxLzf779AdX2UKGgGR8BhYAAAAAAAaAdLi2gIR0BqzXWz4UN8dX2UKGgGR8BVQAAAAAAAaAdLVWgIR0Bq0pXQtz0ZdX2UKGgGR8Bm4AAAAAAAaAdLt2gIR0Bq3YXXRPXTdX2UKGgGR8BegAAAAAAAaAdLemgIR0Bq5UZP2wmmdX2UKGgGR8BXQAAAAAAAaAdLXWgIR0Bq6yjnFHawdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0Bq8f+Q2dd3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bq/fSKFZgYdX2UKGgGR8BaAAAAAAAAaAdLaGgIR0BrBIiJO32FdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0BrC31jAi3YdX2UKGgGR8BkwAAAAAAAaAdLpmgIR0BrFYVARkEtdX2UKGgGR8BfwAAAAAAAaAdLf2gIR0BrHThP0qYrdX2UKGgGR8BfAAAAAAAAaAdLfGgIR0BrJR02cawVdX2UKGgGR8BoIAAAAAAAaAdLwWgIR0BrMNdzGPxQdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0BrN9fXwsoVdX2UKGgGR8BooAAAAAAAaAdLxWgIR0BrRH7zkIX1dX2UKGgGR8BlYAAAAAAAaAdLq2gIR0BrTnjyWiUQdX2UKGgGR8BXwAAAAAAAaAdLX2gIR0BrVFI7Njb0dX2UKGgGR8BdwAAAAAAAaAdLd2gIR0BrW/mxMWXUdX2UKGgGR8BmgAAAAAAAaAdLtGgIR0BrZs78vVVhdX2UKGgGR8BfQAAAAAAAaAdLfWgIR0Brbomqo60ZdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0BreE01qFh5dX2UKGgGR8BfAAAAAAAAaAdLfGgIR0BrgCk9ECvHdX2UKGgGR8BXwAAAAAAAaAdLX2gIR0BrhUmICU5ddX2UKGgGR8BbwAAAAAAAaAdLb2gIR0BrjBBVuJk5dX2UKGgGR8BkIAAAAAAAaAdLoWgIR0Brlcwi7kGSdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0Brn7Rv3rUtdX2UKGgGR8BngAAAAAAAaAdLvGgIR0Brq2XXyy2QdX2UKGgGR8BZQAAAAAAAaAdLZWgIR0BrsXck+otMdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0BruFB+nZTRdX2UKGgGR8BgoAAAAAAAaAdLhWgIR0BrwUvsZ5zHdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BryBoGpuMudX2UKGgGR8BXwAAAAAAAaAdLX2gIR0Brzfos7MgVdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0Br1Nmz0HyFdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0Br29EPUaybdX2UKGgGR8BkwAAAAAAAaAdLpmgIR0Br5brC3w1BdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0Br7WHerMkhdX2UKGgGR8BXwAAAAAAAaAdLX2gIR0Br8zVawD/3dX2UKGgGR8BcgAAAAAAAaAdLcmgIR0Br+icmShaldX2UKGgGR8BfwAAAAAAAaAdLf2gIR0BsAhsQ/X5GdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0BsCPVAiV0LdX2UKGgGR8BlwAAAAAAAaAdLrmgIR0BsE7dWQwK0dX2UKGgGR8BgwAAAAAAAaAdLhmgIR0BsG6b4Ju2rdX2UKGgGR8BkYAAAAAAAaAdLo2gIR0BsJYZTAFgVdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0BsLSp1ie/YdX2UKGgGR8BnQAAAAAAAaAdLumgIR0BsOCsdT5wgdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0BsP/0K7ZnMdX2UKGgGR8BewAAAAAAAaAdLe2gIR0BsRvljmSyMdX2UKGgGR8BdgAAAAAAAaAdLdmgIR0BsTqcqe9SNdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0BsVYJgLJCCdWUu"
|
82 |
+
},
|
83 |
+
"ep_success_buffer": {
|
84 |
+
":type:": "<class 'collections.deque'>",
|
85 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
86 |
+
},
|
87 |
+
"_n_updates": 59496,
|
88 |
+
"buffer_size": 10000,
|
89 |
+
"batch_size": 128,
|
90 |
+
"learning_starts": 1000,
|
91 |
+
"tau": 1.0,
|
92 |
+
"gamma": 0.98,
|
93 |
+
"gradient_steps": 8,
|
94 |
+
"optimize_memory_usage": false,
|
95 |
+
"replay_buffer_class": {
|
96 |
+
":type:": "<class 'abc.ABCMeta'>",
|
97 |
+
":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
98 |
+
"__module__": "stable_baselines3.common.buffers",
|
99 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
100 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7ff47da5c2f0>",
|
101 |
+
"add": "<function ReplayBuffer.add at 0x7ff47da5c378>",
|
102 |
+
"sample": "<function ReplayBuffer.sample at 0x7ff47da5c400>",
|
103 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7ff47da5c488>",
|
104 |
+
"__abstractmethods__": "frozenset()",
|
105 |
+
"_abc_registry": "<_weakrefset.WeakSet object at 0x7ff47db41358>",
|
106 |
+
"_abc_cache": "<_weakrefset.WeakSet object at 0x7ff47db413c8>",
|
107 |
+
"_abc_negative_cache": "<_weakrefset.WeakSet object at 0x7ff47db41438>",
|
108 |
+
"_abc_negative_cache_version": 59
|
109 |
+
},
|
110 |
+
"replay_buffer_kwargs": {},
|
111 |
+
"remove_time_limit_termination": false,
|
112 |
+
"train_freq": {
|
113 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
114 |
+
":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLEGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
115 |
+
},
|
116 |
+
"actor": null,
|
117 |
+
"use_sde_at_warmup": false,
|
118 |
+
"exploration_initial_eps": 1.0,
|
119 |
+
"exploration_final_eps": 0.07,
|
120 |
+
"exploration_fraction": 0.2,
|
121 |
+
"target_update_interval": 600,
|
122 |
+
"max_grad_norm": 10,
|
123 |
+
"exploration_rate": 0.07,
|
124 |
+
"exploration_schedule": {
|
125 |
+
":type:": "<class 'function'>",
|
126 |
+
":serialized:": "gASVqQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGsvaG9tZS9hZ2FyY2lhL3JlcG9zL2RlZXAtcmwtY2xhc3MvdW5pdDEvdW5pdDEvbGliL3B5dGhvbjMuNi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS25DBgABDAEEApSMA2VuZJSMDGVuZF9mcmFjdGlvbpSMBXN0YXJ0lIeUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMay9ob21lL2FnYXJjaWEvcmVwb3MvZGVlcC1ybC1jbGFzcy91bml0MS91bml0MS9saWIvcHl0aG9uMy42L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB4pUpRoHilSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgkfZR9lChoGWgOjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAuMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoMHWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgajAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+x64UeuFHshZRSlGg4Rz/JmZmZmZmahZRSlGg4Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
127 |
+
}
|
128 |
+
}
|
DQN-mountaincar-zoo/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1443f641c8c92526fd7a309e578fae506bca0e8206236d23f0abc718feca3cbe
|
3 |
+
size 541953
|
DQN-mountaincar-zoo/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6656c2a9d493a0e97274352d3eed82977af53e03ecdd352b82bbb19c8a64c0e
|
3 |
+
size 542721
|
DQN-mountaincar-zoo/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
DQN-mountaincar-zoo/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-4.15.0-184-generic-x86_64-with-Ubuntu-18.04-bionic #194-Ubuntu SMP Thu Jun 2 18:54:48 UTC 2022
|
2 |
+
Python: 3.6.9
|
3 |
+
Stable-Baselines3: 1.3.0
|
4 |
+
PyTorch: 1.10.2+cu102
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.19.5
|
7 |
+
Gym: 0.19.0
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- MountainCar-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DQN
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -103.60 +/- 20.73
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: MountainCar-v0
|
20 |
+
type: MountainCar-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **DQN** Agent playing **MountainCar-v0**
|
24 |
+
This is a trained model of a **DQN** agent playing **MountainCar-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7ff47da140d0>", "_build": "<function DQNPolicy._build at 0x7ff47da14158>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7ff47da141e0>", "forward": "<function DQNPolicy.forward at 0x7ff47da14268>", "_predict": "<function DQNPolicy._predict at 0x7ff47da142f0>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7ff47da14378>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7ff47da14400>", "__abstractmethods__": "frozenset()", "_abc_registry": "<_weakrefset.WeakSet object at 0x7ff47da0ce48>", "_abc_cache": "<_weakrefset.WeakSet object at 0x7ff47da0ce80>", "_abc_negative_cache": "<_weakrefset.WeakSet object at 0x7ff47da0cef0>", "_abc_negative_cache_version": 59}, "verbose": 1, "policy_kwargs": {"net_arch": [256, 256]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVjAEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsChZSMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwKFlGgLiUMImpmZvylcj72UdJRijARoaWdolGgTaBVLAIWUaBeHlFKUKEsBSwKFlGgLiUMImpkZPylcjz2UdJRijA1ib3VuZGVkX2JlbG93lGgTaBVLAIWUaBeHlFKUKEsBSwKFlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMCAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgTaBVLAIWUaBeHlFKUKEsBSwKFlGgriUMCAQGUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVTAsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wFc2hhcGWUKYwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoFIwFc3RhdGWUfZQojANrZXmUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoCIwHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAU1wAoWUaAqMAnU0lImIh5RSlChLA2gOTk5OSv////9K/////0sAdJRiiULACQAAAAAAgPS6F4OTt7Zgxw/oaqjV9IojLnzI5vRvdUZpXqZorO2VdYr8xz5aBoRrWMCMbGM+u3Ep5AEeLKDSW8lDCMRRJMnOd/1iahjN1MjrfEsTx3DzAiQsQAOpgLVw1oGHoCtqu5bVbloQpHnTf+v9XKfZUJ3tJ3q/boly/xcFmPSYFtsLrM4ygRKd5c8s6KalMpqMMqjnte1RHSqVa/1o+nMXEnNZWt5F0Kfb38WD1SmwyM1glZgt2AWe603rBCRA1pN7kdZN4gizBqGGagaGn/LZvSNqFLhEYMXRU41UsEmPbXtkHYbCXU94DyITaVDwlsbcuWnKCU28/Bpmx89S9BFoZS1yvQEG5rXiS+PJSe3/IYEcX5zlzD8Nb7mDAZ6tiCInDG2jgi9aQsDDerp3xtf96XYpel6ipTeDWGI0d2dye+PFb3IVwQv4I/cCde4KEQa10Sh2iOAy8f7E2OLIAamGQJGFwYuPcvY27e1r+tBrw4hLqtKVbrI4r2iglaPGQdcs43cEhyyfUYDwuov3A1owlkhWnKFgAYs/bav4XS+wmzmd7O4Kc4hqOt6Envbb8j9XUnbmiO5DuR3IpZCY5H3Tsxsl7cu4Q59b7BXBHYuWNEZv6+Mil4Jn4AtfSyWBhRwLFJB4kyrfzzlvWqzkx5pBgvNKJgEDP2Ah3idrmStaTYL+TxqQPTAC2of7fINNPkWQcUEsJadsJ/PTrfvBGyfTOqRcpSszq4lZmxm7spJXJtA1Bz5VaWarETyrdVNmxM6q4xKQVH9vH5oIBqEwA9b1q4OLF5ZieY7KdwUcLAQBODjurqpEV/9rEEjSS4BkjcMUvlxLU9O/ZTtaebksdKcH7YqsxL9PLMsZ7x0drb0urmjmmAaNVyaL+szxszshBVG0E1XE+1PdpDnkhl2o/HQPvsZMEMEPOSzhgdeQFC9nX2ynF4l7/U0keekREZOI6eRUe4VCxb+7xMPtjJR/7wPFGpvrzIXvniYUbZel7gthVh3J55Z/PmZWieBUSr47Yv4mrN0N6+RQRDEyqtfi9olwi3RFVH/MNvMAHDHI9p/VFJy6PrSyz0F48YAnSRQ9Z2TPa6j20z1UTfTkWidnDAUFSg+vyRPljkIhsqCZCFbMFu0qLZg5xGX98EwdqvmII1bpVF5vwObXjxXJ1yYZ9NJBg+h5k+uX+E9fy/U8SADGGQsFoAaT/LnFn38TSb2J3Yrs6nBsx3NT6eMbUDdwictHWkRgdjv+m/r/qnzKqRdV5rC6QKPO8/+nNfXlh7q07xjV3a2lKP8Un4vRLohy24jP87DyHO+bMxhlq55hFSSvXyYbK9KNd112wzvA4J47lyyLsB+B6zVyQlRyjAqItv0PXUrPmDE7zwQ18EirhGPQlmvxNERjjO3Fha/PI1CWyt4ZuF6y+kOpeuPuo9dArbdD/pid0zv09O9GMTivXd+LNAUY3zwOjrD/kPoBYjq6IXoL9c6ClABb/J15qN0J7ZkCDpyJ1e1xg189xihMVvcGchPysWoZxpPhaXv3ucp9I8yiO7I40R8JVOaUh2+gYRFolcMrerh9nGdBY1Opkx2EEgmTiqanPxSiX83IItfhrjIMg1dviRub7DkBirp8OYJZn7TXajy+R5ovSFDClbFOmqmtPubQoFGS2thmGF1SIClXzUIwnZ6/YBX38QZF3W+Wh6JVimsm67vTqf9GnFOmfg2Nl/4cHCZ9aMvFHvJ+a2NxWiZGK0edqJpG8syeUqWjp4MP/+LUDJjLBXm7/HZehch9DsDPljq5jF6PybJCzOThhXAGFWeD2X94ipjoA4vCp00NImArx+V/3p3gFDR+cu74w2JQxEHhDaLydX/HaUg+BoUT1zy36FJ+/OKju1jmk/8JeVo4k7WUXu84PSajWjutuCSuVYCrAUrm7tPg8GUtBB/4UWMdTBi3qAHGjAs/MXkNmovOXef8x8PgZZnpWoVkwL4gVlukhig4fkX1F57rqaHzMmVi74J+pgh2SFH8ylewQDqe+hl2iIVbuBFAZ7djKzeLkwM64SeRUNCBVNhgo03f10hcMq/aUdr7lzh9e7xX7u7I6kXujna5YiukUSN9inmt6ROj2INqE0WtEHvStK1iug5InKbx82+X1ZTomrRdaWhRnkFig9IX/PBHIRwvI9BFWIFEf+rgUqIG8Ia/tjFIRNp+l7pn24M/w01nyWV0Sk2ZIW/0pAZC9mEftP5ej60/lgHmaqE2IbyhptjIWJBay804IDW2WYFHFRO+h7LJx9lh079NECdQ+AwckqWfGauh4ixulxXG79zo2jjKXRrRCsNG05bfywI5fR6UKeiPBrEszh05E2ERw8PMzhNozPFJ2zoeHjRCdmxP2r2PJlejJnX6qEd6bbK3dz665brhlogcGOjHcUrRQsZImy+NdB3aQDPcxbr9Vs/IrKjoRxGcLyAaRMvwFBuJeEFhp1UOA/inJAEqYvCgqud0Ui9g+ieTVSv6dAf8Z0qmnFST+2V+Jga2UDxAMOEYKKl15vTRpq1GLbjxBhDoOoBmMmScUh1RTqi7LpKMK9v57T9U4lqNOuku971QvDVL3cO+fMFqRltyY+XxenbESmle5yS5YkKdtS4OmL73aQyCnQluSV4d2Jo6e3j6mLKD7TQOIBVRpxd6z3GfAboN4FPHZdzww/PD1lU22Jp9v5rJWzOxBXyvPZtrv3apj5jIuRCUrSj5/KkKCVLCvHk+sxowW37zfCdqLpVhQgerCt+eSwb3HAvKisuRJEkwdGUWE3Pw2pW1vNOHCsLsIWLytmmSMhF+XGXIHtmoRAPd6D4NJ52p1MElf933Ty2QtUAqypEgdUkkbPd3LXJXmYkEdgdTEWRDNzLLPzJxgbwk+5voikuE0e0ac28X2aPFFr8uF4sUygEFvWAWJ7ImMRlTujpX52KlyJG5RafL0p9yo/ks8gjn28WdxiUDoZl+edqGTv8D2XJ48pErHp73ysmsK40SbrqdUf1q/3ppV2Xy6S41I9kWw1vFj3L7WV/thuAd1sKdCb+MwhCzZ5eOwkyRZgeBo6yDwJOTQOQrxmlwTaYLhW2S2HvKz9rt0zubIxa6S4IuQZzwPSf4bI0owqueTXL1ML57C1hbvYj/JWDQmWC3PhCEvOniC5bL9iHRGUEKdon8bqrj7bz2mUDEhIKEnDTPD1Ed3mCOpAYm0W0chmL0l1OpXu51luzMSwR8ETqSef6fWpS2eUVO0c51JAkge/AurokwjZ7BtsrMHaP93iVhU7K98xS/E5ebA3mOfnWtBerdJzHOLgN10eYM7BnhLrtRAdNV47TgCl7ZJXBdIfNMlHSUYowDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 3, "shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 120000, "_total_timesteps": 120000, "seed": 4128998006, "action_noise": null, "start_time": 1654632160.5571954, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gASVBQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxrL2hvbWUvYWdhcmNpYS9yZXBvcy9kZWVwLXJsLWNsYXNzL3VuaXQxL3VuaXQxL2xpYi9weXRob24zLjYvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGsvaG9tZS9hZ2FyY2lhL3JlcG9zL2RlZXAtcmwtY2xhc3MvdW5pdDEvdW5pdDEvbGliL3B5dGhvbjMuNi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/cGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "tensorboard_log": "mountaincar_zoo/MountainCar-v0", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVBQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxrL2hvbWUvYWdhcmNpYS9yZXBvcy9kZWVwLXJsLWNsYXNzL3VuaXQxL3VuaXQxL2xpYi9weXRob24zLjYvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGsvaG9tZS9hZ2FyY2lhL3JlcG9zL2RlZXAtcmwtY2xhc3MvdW5pdDEvdW5pdDEvbGliL3B5dGhvbjMuNi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/cGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVkgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMIIshJvxwL4byUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVkgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMIyb9Cvxc55ryUdJRiLg=="}, "_episode_num": 768, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 8.333333333387927e-06, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFhAAAAAAACMAWyUS2GMAXSUR0BpSIEhaC+UdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0BpTpZW7voedX2UKGgGR8BhgAAAAAAAaAdLjGgIR0BpV4xFiKBNdX2UKGgGR8BewAAAAAAAaAdLe2gIR0BpX3z4DcM3dX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BpZmzD4xk/dX2UKGgGR8BZwAAAAAAAaAdLZ2gIR0BpbJJ2+wkgdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0Bpc0GNaQmvdX2UKGgGR8BfAAAAAAAAaAdLfGgIR0BpeW+GoJiRdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0Bpf2hf0EowdX2UKGgGR8BkoAAAAAAAaAdLpWgIR0BpiBqbjLjhdX2UKGgGR8BgAAAAAAAAaAdLgGgIR0BpjklqrR0EdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0Bpk7Fl05lwdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0BpmXHeaa1DdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0Bpn2FWXC0odX2UKGgGR8BiAAAAAAAAaAdLkGgIR0BpqDs0HhS+dX2UKGgGR8BdwAAAAAAAaAdLd2gIR0Bpr+hwl0HRdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BpttgSeyzHdX2UKGgGR8BioAAAAAAAaAdLlWgIR0Bpv7PnjhkzdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0BpxooAn2IwdX2UKGgGR8BewAAAAAAAaAdLe2gIR0Bpzl1uBMBZdX2UKGgGR8BfwAAAAAAAaAdLf2gIR0Bp1k384xUOdX2UKGgGR8BaAAAAAAAAaAdLaGgIR0Bp3FayKNyYdX2UKGgGR8BgYAAAAAAAaAdLg2gIR0Bp5RigCfYjdX2UKGgGR8BegAAAAAAAaAdLemgIR0Bp8/Zbpu/DdX2UKGgGR8BfgAAAAAAAaAdLfmgIR0Bp+5ClabF1dX2UKGgGR8BigAAAAAAAaAdLlGgIR0BqBHRG+bmVdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0BqDAXXRPXTdX2UKGgGR8BfQAAAAAAAaAdLfWgIR0BqE8zuWrwOdX2UKGgGR8BiAAAAAAAAaAdLkGgIR0BqHMN+b3GodX2UKGgGR8BgQAAAAAAAaAdLgmgIR0BqJNZRsMy8dX2UKGgGR8BiQAAAAAAAaAdLkmgIR0BqLa6cy31BdX2UKGgGR8BdgAAAAAAAaAdLdmgIR0BqNMTcqOLjdX2UKGgGR8Bh4AAAAAAAaAdLj2gIR0BqPaVrylN2dX2UKGgGR8BfwAAAAAAAaAdLf2gIR0BqRaG8EmpmdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0BqTWDSPU8WdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0BqVE/+sHSndX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BqW0gbIcR2dX2UKGgGR8BhQAAAAAAAaAdLimgIR0BqY2JBPbfxdX2UKGgGR8BfQAAAAAAAaAdLfWgIR0BqazG7z06HdX2UKGgGR8BgQAAAAAAAaAdLgmgIR0BqczeoDPnkdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0Bqejst03fidX2UKGgGR8BewAAAAAAAaAdLe2gIR0BqgfP5YYBOdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BqiNRekYXPdX2UKGgGR8BYAAAAAAAAaAdLYGgIR0Bqjsfkmx+sdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0BqlpK3/givdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BqnWG9HtngdX2UKGgGR8BegAAAAAAAaAdLemgIR0BqpF4xDb8FdX2UKGgGR8BewAAAAAAAaAdLe2gIR0BqrCeVcD8tdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0BqsyDM/yG0dX2UKGgGR8BigAAAAAAAaAdLlGgIR0BqvMLKFIuodX2UKGgGR8BggAAAAAAAaAdLhGgIR0BqxLzf779AdX2UKGgGR8BhYAAAAAAAaAdLi2gIR0BqzXWz4UN8dX2UKGgGR8BVQAAAAAAAaAdLVWgIR0Bq0pXQtz0ZdX2UKGgGR8Bm4AAAAAAAaAdLt2gIR0Bq3YXXRPXTdX2UKGgGR8BegAAAAAAAaAdLemgIR0Bq5UZP2wmmdX2UKGgGR8BXQAAAAAAAaAdLXWgIR0Bq6yjnFHawdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0Bq8f+Q2dd3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bq/fSKFZgYdX2UKGgGR8BaAAAAAAAAaAdLaGgIR0BrBIiJO32FdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0BrC31jAi3YdX2UKGgGR8BkwAAAAAAAaAdLpmgIR0BrFYVARkEtdX2UKGgGR8BfwAAAAAAAaAdLf2gIR0BrHThP0qYrdX2UKGgGR8BfAAAAAAAAaAdLfGgIR0BrJR02cawVdX2UKGgGR8BoIAAAAAAAaAdLwWgIR0BrMNdzGPxQdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0BrN9fXwsoVdX2UKGgGR8BooAAAAAAAaAdLxWgIR0BrRH7zkIX1dX2UKGgGR8BlYAAAAAAAaAdLq2gIR0BrTnjyWiUQdX2UKGgGR8BXwAAAAAAAaAdLX2gIR0BrVFI7Njb0dX2UKGgGR8BdwAAAAAAAaAdLd2gIR0BrW/mxMWXUdX2UKGgGR8BmgAAAAAAAaAdLtGgIR0BrZs78vVVhdX2UKGgGR8BfQAAAAAAAaAdLfWgIR0Brbomqo60ZdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0BreE01qFh5dX2UKGgGR8BfAAAAAAAAaAdLfGgIR0BrgCk9ECvHdX2UKGgGR8BXwAAAAAAAaAdLX2gIR0BrhUmICU5ddX2UKGgGR8BbwAAAAAAAaAdLb2gIR0BrjBBVuJk5dX2UKGgGR8BkIAAAAAAAaAdLoWgIR0Brlcwi7kGSdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0Brn7Rv3rUtdX2UKGgGR8BngAAAAAAAaAdLvGgIR0Brq2XXyy2QdX2UKGgGR8BZQAAAAAAAaAdLZWgIR0BrsXck+otMdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0BruFB+nZTRdX2UKGgGR8BgoAAAAAAAaAdLhWgIR0BrwUvsZ5zHdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BryBoGpuMudX2UKGgGR8BXwAAAAAAAaAdLX2gIR0Brzfos7MgVdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0Br1Nmz0HyFdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0Br29EPUaybdX2UKGgGR8BkwAAAAAAAaAdLpmgIR0Br5brC3w1BdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0Br7WHerMkhdX2UKGgGR8BXwAAAAAAAaAdLX2gIR0Br8zVawD/3dX2UKGgGR8BcgAAAAAAAaAdLcmgIR0Br+icmShaldX2UKGgGR8BfwAAAAAAAaAdLf2gIR0BsAhsQ/X5GdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0BsCPVAiV0LdX2UKGgGR8BlwAAAAAAAaAdLrmgIR0BsE7dWQwK0dX2UKGgGR8BgwAAAAAAAaAdLhmgIR0BsG6b4Ju2rdX2UKGgGR8BkYAAAAAAAaAdLo2gIR0BsJYZTAFgVdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0BsLSp1ie/YdX2UKGgGR8BnQAAAAAAAaAdLumgIR0BsOCsdT5wgdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0BsP/0K7ZnMdX2UKGgGR8BewAAAAAAAaAdLe2gIR0BsRvljmSyMdX2UKGgGR8BdgAAAAAAAaAdLdmgIR0BsTqcqe9SNdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0BsVYJgLJCCdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 59496, "buffer_size": 10000, "batch_size": 128, "learning_starts": 1000, "tau": 1.0, "gamma": 0.98, "gradient_steps": 8, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7ff47da5c2f0>", "add": "<function ReplayBuffer.add at 0x7ff47da5c378>", "sample": "<function ReplayBuffer.sample at 0x7ff47da5c400>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7ff47da5c488>", "__abstractmethods__": "frozenset()", "_abc_registry": "<_weakrefset.WeakSet object at 0x7ff47db41358>", "_abc_cache": "<_weakrefset.WeakSet object at 0x7ff47db413c8>", "_abc_negative_cache": "<_weakrefset.WeakSet object at 0x7ff47db41438>", "_abc_negative_cache_version": 59}, "replay_buffer_kwargs": {}, "remove_time_limit_termination": false, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLEGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.07, "exploration_fraction": 0.2, "target_update_interval": 600, "max_grad_norm": 10, "exploration_rate": 0.07, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVqQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGsvaG9tZS9hZ2FyY2lhL3JlcG9zL2RlZXAtcmwtY2xhc3MvdW5pdDEvdW5pdDEvbGliL3B5dGhvbjMuNi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS25DBgABDAEEApSMA2VuZJSMDGVuZF9mcmFjdGlvbpSMBXN0YXJ0lIeUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMay9ob21lL2FnYXJjaWEvcmVwb3MvZGVlcC1ybC1jbGFzcy91bml0MS91bml0MS9saWIvcHl0aG9uMy42L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB4pUpRoHilSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgkfZR9lChoGWgOjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAuMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoMHWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgajAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+x64UeuFHshZRSlGg4Rz/JmZmZmZmahZRSlGg4Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-4.15.0-184-generic-x86_64-with-Ubuntu-18.04-bionic #194-Ubuntu SMP Thu Jun 2 18:54:48 UTC 2022", "Python": "3.6.9", "Stable-Baselines3": "1.3.0", "PyTorch": "1.10.2+cu102", "GPU Enabled": "True", "Numpy": "1.19.5", "Gym": "0.19.0"}}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -103.6, "std_reward": 20.732583051805197, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-11T20:55:27.093815"}
|