first ppo model
Browse files- README.md +37 -0
- config.json +1 -0
- lunar-ppo.zip +3 -0
- lunar-ppo/_stable_baselines3_version +1 -0
- lunar-ppo/data +95 -0
- lunar-ppo/policy.optimizer.pth +3 -0
- lunar-ppo/policy.pth +3 -0
- lunar-ppo/pytorch_variables.pth +3 -0
- lunar-ppo/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: ppo
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 272.09 +/- 72.60
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **ppo** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **ppo** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb6cc51a820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb6cc51a8b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb6cc51a940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb6cc51a9d0>", "_build": "<function ActorCriticPolicy._build at 0x7fb6cc51aa60>", "forward": "<function ActorCriticPolicy.forward at 0x7fb6cc51aaf0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb6cc51ab80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb6cc51ac10>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb6cc51aca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb6cc51ad30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb6cc51adc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb6cc51ae50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb6cc5158d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673534755415037229, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMSEj2T4q8/Uhj1PtOQoL4UajK6Tfv5PQAAAAAAAAAAbTATvmy2UD8a7wa+IVctv9GsjL6xJz89AAAAAAAAAABanZk9L0NWPW2icb7Bnpy+LQGjvTVNQb4AAAAAAAAAAGaVBr6JUII+KwVCPuBRGb8rgY69bZasPQAAAAAAAAAAzWNrPVaiHj2TjnW+6m9rvjrzPr7IoPy9AAAAAAAAAADNBQM99pwAul07q7quHr+4c9ypN1JKxTkAAIA/AACAP6amvr322RI/4pzvvCArL7+gdyG+674lPAAAAAAAAAAAM1vMvPYEI7qKp/c4+/MzNHubtDuPqhG4AACAPwAAgD+mBTq+EGcJPwOH2D2jSTC/IV00vvDtDz4AAAAAAAAAAM03tD1IRs898lwsvjo+qr6Zpyu8y8sXvQAAAAAAAAAAM+80vWnhH7zmjO08TVHiOyyTUbvWfEi9AACAPwAAgD9mbQA9w8ENunWRpL0Xuyw1MxfCOqs4mLQAAIA/AACAPwBGzLzmUq8/cvaHvu7fnr7YGn6808yWvQAAAAAAAAAAcwSxPRP1Zz8v6zU+hYlPv3aMID66FNI8AAAAAAAAAACTBAE+sUZlP9LjKj4wqT6/1lBXPopZDr0AAAAAAAAAAFo1pz05dLQ/JPSxPlzJkL7YACY+yL9XPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIltBdEmfDckCUhpRSlIwBbJRL0owBdJRHQKfIj+CsfaJ1fZQoaAZoCWgPQwjkS6jgMGBzQJSGlFKUaBVLv2gWR0CnyKJEYwZgdX2UKGgGaAloD0MIDqK1oo3QcUCUhpRSlGgVS4loFkdAp8jQ8Md92HV9lChoBmgJaA9DCD3xnC0gw3NAlIaUUpRoFUu3aBZHQKfI2tr9ETh1fZQoaAZoCWgPQwh/oUeMnjlwQJSGlFKUaBVLimgWR0CnyQ0fYBeYdX2UKGgGaAloD0MI7uh/uRY+cUCUhpRSlGgVS8JoFkdAp8kqoddVvXV9lChoBmgJaA9DCBObj2vD/XJAlIaUUpRoFUujaBZHQKfJSpjMFEB1fZQoaAZoCWgPQwhKJNHLKHhDQJSGlFKUaBVLU2gWR0CnyVEWAPNFdX2UKGgGaAloD0MIUdhF0QP3cUCUhpRSlGgVS8FoFkdAp8lUvf0mMXV9lChoBmgJaA9DCOFembcqGHFAlIaUUpRoFUumaBZHQKfJXy+6Ae91fZQoaAZoCWgPQwgZxt0g2kByQJSGlFKUaBVLxmgWR0CnyZt4JNTMdX2UKGgGaAloD0MISmBzDl4Jc0CUhpRSlGgVS59oFkdAp8nFOKwY+HV9lChoBmgJaA9DCCO6Z11jk3BAlIaUUpRoFUvAaBZHQKfKA/Yao/B1fZQoaAZoCWgPQwj5n/zdu+xxQJSGlFKUaBVLrGgWR0CnygcYZVGTdX2UKGgGaAloD0MIJlMFo5LDc0CUhpRSlGgVS7VoFkdAp8oXOt4iYHV9lChoBmgJaA9DCM1XyccuQHNAlIaUUpRoFUukaBZHQKfKIdRR/Ex1fZQoaAZoCWgPQwhlARO4NU1yQJSGlFKUaBVL2mgWR0Cnyi1lf7aadX2UKGgGaAloD0MI/RGGAUseb0CUhpRSlGgVS6BoFkdAp8orr/sE7nV9lChoBmgJaA9DCMTQ6uSMo29AlIaUUpRoFUufaBZHQKfKXGEwnIB1fZQoaAZoCWgPQwgicvp6fjlzQJSGlFKUaBVLq2gWR0Cnym5J9RaYdX2UKGgGaAloD0MID4C4q9e7ckCUhpRSlGgVS49oFkdAp8qDvZyuIXV9lChoBmgJaA9DCKJ6a2DrTnBAlIaUUpRoFUujaBZHQKfKlbj94u91fZQoaAZoCWgPQwgjSnuDb6hxQJSGlFKUaBVLk2gWR0Cnyrj0163RdX2UKGgGaAloD0MIVHB4QcRcckCUhpRSlGgVS5xoFkdAp8rBE4Nqg3V9lChoBmgJaA9DCIenV8qyxnJAlIaUUpRoFUupaBZHQKfK4UWVNYd1fZQoaAZoCWgPQwhwsg3cgdlwQJSGlFKUaBVLu2gWR0CnywC0v4/NdX2UKGgGaAloD0MI0EcZcQFSckCUhpRSlGgVS4JoFkdAp8s6u0TlDHV9lChoBmgJaA9DCEoKLIDplnBAlIaUUpRoFUuUaBZHQKfLU9DhLoR1fZQoaAZoCWgPQwgOFk7S/OFwQJSGlFKUaBVLvmgWR0Cny1T+NtIkdX2UKGgGaAloD0MIN3AH6lQ2ckCUhpRSlGgVS8VoFkdAp8uUgbIcR3V9lChoBmgJaA9DCIh/2NIjzHFAlIaUUpRoFUu2aBZHQKfLsMIeHSF1fZQoaAZoCWgPQwi1/pYAvDFzQJSGlFKUaBVLrGgWR0Cny8AIQe3hdX2UKGgGaAloD0MI1bFK6ZlTcUCUhpRSlGgVS79oFkdAp8vkafjCHnV9lChoBmgJaA9DCPAXsyVrQHNAlIaUUpRoFUugaBZHQKfMCCGN70F1fZQoaAZoCWgPQwhNLVvrSxBzQJSGlFKUaBVLsWgWR0CnzAeXzDoAdX2UKGgGaAloD0MI1ZelnZoIc0CUhpRSlGgVS81oFkdAp8wREWqLj3V9lChoBmgJaA9DCOPCgZBsTXRAlIaUUpRoFUu1aBZHQKfMIpZOi351fZQoaAZoCWgPQwjG4cyvpnJxQJSGlFKUaBVLt2gWR0CnzE59NN8FdX2UKGgGaAloD0MIAP+UKhHucECUhpRSlGgVS6hoFkdAp8xXaHsTnXV9lChoBmgJaA9DCGVR2EXRRXNAlIaUUpRoFUu4aBZHQKfMcoPTXrd1fZQoaAZoCWgPQwgJUil2dChxQJSGlFKUaBVLtWgWR0CnzJT37DVIdX2UKGgGaAloD0MIlSu8y4Wtc0CUhpRSlGgVS6toFkdAp8yebRWtEHV9lChoBmgJaA9DCMQJTKf1+3JAlIaUUpRoFUulaBZHQKfMxq/M4cZ1fZQoaAZoCWgPQwgLCRhdHpRzQJSGlFKUaBVLr2gWR0CnzPZxzaK2dX2UKGgGaAloD0MIEoPAyiGGckCUhpRSlGgVS7doFkdAp80IhGH58HV9lChoBmgJaA9DCOqu7IIBjnFAlIaUUpRoFUukaBZHQKfNQHKOktV1fZQoaAZoCWgPQwj9hokGqcRyQJSGlFKUaBVLrGgWR0CnzUTs6aLGdX2UKGgGaAloD0MIIc1YNB01c0CUhpRSlGgVS8xoFkdAp81324/eL3V9lChoBmgJaA9DCDV+4ZWkmm5AlIaUUpRoFUuVaBZHQKfNf2OhkAh1fZQoaAZoCWgPQwhkQPZ6t5RwQJSGlFKUaBVLrGgWR0CnzZ8s189fdX2UKGgGaAloD0MIL/oK0gzbckCUhpRSlGgVS8VoFkdAp824PbwjMXV9lChoBmgJaA9DCMxh9x3DXXNAlIaUUpRoFUvNaBZHQKfN8HuZ1FJ1fZQoaAZoCWgPQwii8UQQp9ZxQJSGlFKUaBVLymgWR0CnzfN8/lhgdX2UKGgGaAloD0MITYHMzqIsckCUhpRSlGgVS75oFkdAp84kMZxaPnV9lChoBmgJaA9DCLw+c9an83BAlIaUUpRoFUuqaBZHQKfOOLXtjTd1fZQoaAZoCWgPQwjwUuqScQxyQJSGlFKUaBVLzWgWR0CnzkECvHLidX2UKGgGaAloD0MIGAXB45uGcECUhpRSlGgVS4loFkdAp85P3BYV7HV9lChoBmgJaA9DCJIFTOBWBXNAlIaUUpRoFUvJaBZHQKfOX4UN8Vp1fZQoaAZoCWgPQwhcPLznQHpzQJSGlFKUaBVLt2gWR0CnzmHFPznSdX2UKGgGaAloD0MIEVSNXo31c0CUhpRSlGgVS8BoFkdAp86gM2FWXHV9lChoBmgJaA9DCIIbKVsk1XNAlIaUUpRoFUu/aBZHQKfO4tKZlWh1fZQoaAZoCWgPQwjaykv+ZzdwQJSGlFKUaBVLqWgWR0Cnzuhun/DMdX2UKGgGaAloD0MITntKzsm3ckCUhpRSlGgVS7NoFkdAp877212JSHV9lChoBmgJaA9DCJkqGJWUZ3FAlIaUUpRoFUubaBZHQKfO/x1gYxd1fZQoaAZoCWgPQwid9L7xNa1yQJSGlFKUaBVLuGgWR0Cnzz/D1oQGdX2UKGgGaAloD0MIzEBl/HsPcUCUhpRSlGgVS59oFkdAp88+phnanXV9lChoBmgJaA9DCEjDKXPzNHJAlIaUUpRoFUuxaBZHQKfPUQRPGhp1fZQoaAZoCWgPQwgI6L6cmX9yQJSGlFKUaBVLqmgWR0Cnz5JR4yGjdX2UKGgGaAloD0MIpOGUuTkYcUCUhpRSlGgVS5xoFkdAp8/KVnmJWXV9lChoBmgJaA9DCOxnsRSJInFAlIaUUpRoFUuoaBZHQKfP0NYr8SB1fZQoaAZoCWgPQwg4LXjR12lyQJSGlFKUaBVLrmgWR0Cnz+fQBxPwdX2UKGgGaAloD0MIi4ujctPncUCUhpRSlGgVS7hoFkdAp8/m1OTJQ3V9lChoBmgJaA9DCFRSJ6AJ73FAlIaUUpRoFUvPaBZHQKfP7X+2mYV1fZQoaAZoCWgPQwhegehJWRlxQJSGlFKUaBVLqGgWR0Cnz/q1gH/tdX2UKGgGaAloD0MIizVc5J44ckCUhpRSlGgVS4BoFkdAp9AZk078vXV9lChoBmgJaA9DCAiqRq8GcnJAlIaUUpRoFUukaBZHQKfQLRk3CKt1fZQoaAZoCWgPQwi1w1+Tde9xQJSGlFKUaBVLiWgWR0Cn0DJoK2KEdX2UKGgGaAloD0MIn+i68MMbc0CUhpRSlGgVS8NoFkdAp9A0SPEKmnV9lChoBmgJaA9DCGqlEMjl23BAlIaUUpRoFUufaBZHQKfQcwvg3tN1fZQoaAZoCWgPQwgWo661dyJyQJSGlFKUaBVLjGgWR0Cn0IUHQhOhdX2UKGgGaAloD0MIiNhg4WTqckCUhpRSlGgVS79oFkdAp9C7+98JD3V9lChoBmgJaA9DCHPYfccwYnJAlIaUUpRoFUutaBZHQKfQ5KSxJNF1fZQoaAZoCWgPQwgr2bERCLdxQJSGlFKUaBVLt2gWR0Cn0OzcqOLjdX2UKGgGaAloD0MIvvc3aO/qcUCUhpRSlGgVS5doFkdAp9EtlXiiqXV9lChoBmgJaA9DCKeyKOyidXFAlIaUUpRoFUuvaBZHQKfRLCoCMgl1fZQoaAZoCWgPQwgUev1J/LluQJSGlFKUaBVLk2gWR0Cn0T56+nIidX2UKGgGaAloD0MIV5V9V8Thc0CUhpRSlGgVS6VoFkdAp9FjD4xk/nV9lChoBmgJaA9DCH8SnztBPHJAlIaUUpRoFUu8aBZHQKfRfz5oGpx1fZQoaAZoCWgPQwhsIjMX+CNxQJSGlFKUaBVLq2gWR0Cn0YUwrUb2dX2UKGgGaAloD0MIkunQ6TmxckCUhpRSlGgVS6hoFkdAp9G2sNlRQHV9lChoBmgJaA9DCHfZrzvdgnNAlIaUUpRoFUvVaBZHQKfR2mNzbN91fZQoaAZoCWgPQwhY5xiQPcBxQJSGlFKUaBVLvWgWR0Cn0fHK4hECdX2UKGgGaAloD0MI3lomwzGHckCUhpRSlGgVS89oFkdAp9IAFC9h7XV9lChoBmgJaA9DCGnhsgpbOXNAlIaUUpRoFUvOaBZHQKfSFzMA3kx1fZQoaAZoCWgPQwhpNo/DoH9yQJSGlFKUaBVLmGgWR0Cn0lKAavRrdX2UKGgGaAloD0MIEayql98cckCUhpRSlGgVS8BoFkdAp9JRhhH9WXV9lChoBmgJaA9DCFPNrKXAq3FAlIaUUpRoFUvPaBZHQKfSZkzXSSh1fZQoaAZoCWgPQwhwz/OnjeZxQJSGlFKUaBVLj2gWR0Cn0oCuloDgdX2UKGgGaAloD0MIMjz2sxi2ckCUhpRSlGgVS5xoFkdAp9KgsEq2B3V9lChoBmgJaA9DCI6R7BHqInRAlIaUUpRoFUvOaBZHQKfSqXVsk6d1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 690, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
lunar-ppo.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5d57367f3031585ce282b9fa15bb9908733047fd8a38bba34928db80057c9e1
|
3 |
+
size 147291
|
lunar-ppo/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
lunar-ppo/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb6cc51a820>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb6cc51a8b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb6cc51a940>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb6cc51a9d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb6cc51aa60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb6cc51aaf0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb6cc51ab80>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb6cc51ac10>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb6cc51aca0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb6cc51ad30>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb6cc51adc0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb6cc51ae50>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fb6cc5158d0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1673534755415037229,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMSEj2T4q8/Uhj1PtOQoL4UajK6Tfv5PQAAAAAAAAAAbTATvmy2UD8a7wa+IVctv9GsjL6xJz89AAAAAAAAAABanZk9L0NWPW2icb7Bnpy+LQGjvTVNQb4AAAAAAAAAAGaVBr6JUII+KwVCPuBRGb8rgY69bZasPQAAAAAAAAAAzWNrPVaiHj2TjnW+6m9rvjrzPr7IoPy9AAAAAAAAAADNBQM99pwAul07q7quHr+4c9ypN1JKxTkAAIA/AACAP6amvr322RI/4pzvvCArL7+gdyG+674lPAAAAAAAAAAAM1vMvPYEI7qKp/c4+/MzNHubtDuPqhG4AACAPwAAgD+mBTq+EGcJPwOH2D2jSTC/IV00vvDtDz4AAAAAAAAAAM03tD1IRs898lwsvjo+qr6Zpyu8y8sXvQAAAAAAAAAAM+80vWnhH7zmjO08TVHiOyyTUbvWfEi9AACAPwAAgD9mbQA9w8ENunWRpL0Xuyw1MxfCOqs4mLQAAIA/AACAPwBGzLzmUq8/cvaHvu7fnr7YGn6808yWvQAAAAAAAAAAcwSxPRP1Zz8v6zU+hYlPv3aMID66FNI8AAAAAAAAAACTBAE+sUZlP9LjKj4wqT6/1lBXPopZDr0AAAAAAAAAAFo1pz05dLQ/JPSxPlzJkL7YACY+yL9XPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIltBdEmfDckCUhpRSlIwBbJRL0owBdJRHQKfIj+CsfaJ1fZQoaAZoCWgPQwjkS6jgMGBzQJSGlFKUaBVLv2gWR0CnyKJEYwZgdX2UKGgGaAloD0MIDqK1oo3QcUCUhpRSlGgVS4loFkdAp8jQ8Md92HV9lChoBmgJaA9DCD3xnC0gw3NAlIaUUpRoFUu3aBZHQKfI2tr9ETh1fZQoaAZoCWgPQwh/oUeMnjlwQJSGlFKUaBVLimgWR0CnyQ0fYBeYdX2UKGgGaAloD0MI7uh/uRY+cUCUhpRSlGgVS8JoFkdAp8kqoddVvXV9lChoBmgJaA9DCBObj2vD/XJAlIaUUpRoFUujaBZHQKfJSpjMFEB1fZQoaAZoCWgPQwhKJNHLKHhDQJSGlFKUaBVLU2gWR0CnyVEWAPNFdX2UKGgGaAloD0MIUdhF0QP3cUCUhpRSlGgVS8FoFkdAp8lUvf0mMXV9lChoBmgJaA9DCOFembcqGHFAlIaUUpRoFUumaBZHQKfJXy+6Ae91fZQoaAZoCWgPQwgZxt0g2kByQJSGlFKUaBVLxmgWR0CnyZt4JNTMdX2UKGgGaAloD0MISmBzDl4Jc0CUhpRSlGgVS59oFkdAp8nFOKwY+HV9lChoBmgJaA9DCCO6Z11jk3BAlIaUUpRoFUvAaBZHQKfKA/Yao/B1fZQoaAZoCWgPQwj5n/zdu+xxQJSGlFKUaBVLrGgWR0CnygcYZVGTdX2UKGgGaAloD0MIJlMFo5LDc0CUhpRSlGgVS7VoFkdAp8oXOt4iYHV9lChoBmgJaA9DCM1XyccuQHNAlIaUUpRoFUukaBZHQKfKIdRR/Ex1fZQoaAZoCWgPQwhlARO4NU1yQJSGlFKUaBVL2mgWR0Cnyi1lf7aadX2UKGgGaAloD0MI/RGGAUseb0CUhpRSlGgVS6BoFkdAp8orr/sE7nV9lChoBmgJaA9DCMTQ6uSMo29AlIaUUpRoFUufaBZHQKfKXGEwnIB1fZQoaAZoCWgPQwgicvp6fjlzQJSGlFKUaBVLq2gWR0Cnym5J9RaYdX2UKGgGaAloD0MID4C4q9e7ckCUhpRSlGgVS49oFkdAp8qDvZyuIXV9lChoBmgJaA9DCKJ6a2DrTnBAlIaUUpRoFUujaBZHQKfKlbj94u91fZQoaAZoCWgPQwgjSnuDb6hxQJSGlFKUaBVLk2gWR0Cnyrj0163RdX2UKGgGaAloD0MIVHB4QcRcckCUhpRSlGgVS5xoFkdAp8rBE4Nqg3V9lChoBmgJaA9DCIenV8qyxnJAlIaUUpRoFUupaBZHQKfK4UWVNYd1fZQoaAZoCWgPQwhwsg3cgdlwQJSGlFKUaBVLu2gWR0CnywC0v4/NdX2UKGgGaAloD0MI0EcZcQFSckCUhpRSlGgVS4JoFkdAp8s6u0TlDHV9lChoBmgJaA9DCEoKLIDplnBAlIaUUpRoFUuUaBZHQKfLU9DhLoR1fZQoaAZoCWgPQwgOFk7S/OFwQJSGlFKUaBVLvmgWR0Cny1T+NtIkdX2UKGgGaAloD0MIN3AH6lQ2ckCUhpRSlGgVS8VoFkdAp8uUgbIcR3V9lChoBmgJaA9DCIh/2NIjzHFAlIaUUpRoFUu2aBZHQKfLsMIeHSF1fZQoaAZoCWgPQwi1/pYAvDFzQJSGlFKUaBVLrGgWR0Cny8AIQe3hdX2UKGgGaAloD0MI1bFK6ZlTcUCUhpRSlGgVS79oFkdAp8vkafjCHnV9lChoBmgJaA9DCPAXsyVrQHNAlIaUUpRoFUugaBZHQKfMCCGN70F1fZQoaAZoCWgPQwhNLVvrSxBzQJSGlFKUaBVLsWgWR0CnzAeXzDoAdX2UKGgGaAloD0MI1ZelnZoIc0CUhpRSlGgVS81oFkdAp8wREWqLj3V9lChoBmgJaA9DCOPCgZBsTXRAlIaUUpRoFUu1aBZHQKfMIpZOi351fZQoaAZoCWgPQwjG4cyvpnJxQJSGlFKUaBVLt2gWR0CnzE59NN8FdX2UKGgGaAloD0MIAP+UKhHucECUhpRSlGgVS6hoFkdAp8xXaHsTnXV9lChoBmgJaA9DCGVR2EXRRXNAlIaUUpRoFUu4aBZHQKfMcoPTXrd1fZQoaAZoCWgPQwgJUil2dChxQJSGlFKUaBVLtWgWR0CnzJT37DVIdX2UKGgGaAloD0MIlSu8y4Wtc0CUhpRSlGgVS6toFkdAp8yebRWtEHV9lChoBmgJaA9DCMQJTKf1+3JAlIaUUpRoFUulaBZHQKfMxq/M4cZ1fZQoaAZoCWgPQwgLCRhdHpRzQJSGlFKUaBVLr2gWR0CnzPZxzaK2dX2UKGgGaAloD0MIEoPAyiGGckCUhpRSlGgVS7doFkdAp80IhGH58HV9lChoBmgJaA9DCOqu7IIBjnFAlIaUUpRoFUukaBZHQKfNQHKOktV1fZQoaAZoCWgPQwj9hokGqcRyQJSGlFKUaBVLrGgWR0CnzUTs6aLGdX2UKGgGaAloD0MIIc1YNB01c0CUhpRSlGgVS8xoFkdAp81324/eL3V9lChoBmgJaA9DCDV+4ZWkmm5AlIaUUpRoFUuVaBZHQKfNf2OhkAh1fZQoaAZoCWgPQwhkQPZ6t5RwQJSGlFKUaBVLrGgWR0CnzZ8s189fdX2UKGgGaAloD0MIL/oK0gzbckCUhpRSlGgVS8VoFkdAp824PbwjMXV9lChoBmgJaA9DCMxh9x3DXXNAlIaUUpRoFUvNaBZHQKfN8HuZ1FJ1fZQoaAZoCWgPQwii8UQQp9ZxQJSGlFKUaBVLymgWR0CnzfN8/lhgdX2UKGgGaAloD0MITYHMzqIsckCUhpRSlGgVS75oFkdAp84kMZxaPnV9lChoBmgJaA9DCLw+c9an83BAlIaUUpRoFUuqaBZHQKfOOLXtjTd1fZQoaAZoCWgPQwjwUuqScQxyQJSGlFKUaBVLzWgWR0CnzkECvHLidX2UKGgGaAloD0MIGAXB45uGcECUhpRSlGgVS4loFkdAp85P3BYV7HV9lChoBmgJaA9DCJIFTOBWBXNAlIaUUpRoFUvJaBZHQKfOX4UN8Vp1fZQoaAZoCWgPQwhcPLznQHpzQJSGlFKUaBVLt2gWR0CnzmHFPznSdX2UKGgGaAloD0MIEVSNXo31c0CUhpRSlGgVS8BoFkdAp86gM2FWXHV9lChoBmgJaA9DCIIbKVsk1XNAlIaUUpRoFUu/aBZHQKfO4tKZlWh1fZQoaAZoCWgPQwjaykv+ZzdwQJSGlFKUaBVLqWgWR0Cnzuhun/DMdX2UKGgGaAloD0MITntKzsm3ckCUhpRSlGgVS7NoFkdAp877212JSHV9lChoBmgJaA9DCJkqGJWUZ3FAlIaUUpRoFUubaBZHQKfO/x1gYxd1fZQoaAZoCWgPQwid9L7xNa1yQJSGlFKUaBVLuGgWR0Cnzz/D1oQGdX2UKGgGaAloD0MIzEBl/HsPcUCUhpRSlGgVS59oFkdAp88+phnanXV9lChoBmgJaA9DCEjDKXPzNHJAlIaUUpRoFUuxaBZHQKfPUQRPGhp1fZQoaAZoCWgPQwgI6L6cmX9yQJSGlFKUaBVLqmgWR0Cnz5JR4yGjdX2UKGgGaAloD0MIpOGUuTkYcUCUhpRSlGgVS5xoFkdAp8/KVnmJWXV9lChoBmgJaA9DCOxnsRSJInFAlIaUUpRoFUuoaBZHQKfP0NYr8SB1fZQoaAZoCWgPQwg4LXjR12lyQJSGlFKUaBVLrmgWR0Cnz+fQBxPwdX2UKGgGaAloD0MIi4ujctPncUCUhpRSlGgVS7hoFkdAp8/m1OTJQ3V9lChoBmgJaA9DCFRSJ6AJ73FAlIaUUpRoFUvPaBZHQKfP7X+2mYV1fZQoaAZoCWgPQwhegehJWRlxQJSGlFKUaBVLqGgWR0Cnz/q1gH/tdX2UKGgGaAloD0MIizVc5J44ckCUhpRSlGgVS4BoFkdAp9AZk078vXV9lChoBmgJaA9DCAiqRq8GcnJAlIaUUpRoFUukaBZHQKfQLRk3CKt1fZQoaAZoCWgPQwi1w1+Tde9xQJSGlFKUaBVLiWgWR0Cn0DJoK2KEdX2UKGgGaAloD0MIn+i68MMbc0CUhpRSlGgVS8NoFkdAp9A0SPEKmnV9lChoBmgJaA9DCGqlEMjl23BAlIaUUpRoFUufaBZHQKfQcwvg3tN1fZQoaAZoCWgPQwgWo661dyJyQJSGlFKUaBVLjGgWR0Cn0IUHQhOhdX2UKGgGaAloD0MIiNhg4WTqckCUhpRSlGgVS79oFkdAp9C7+98JD3V9lChoBmgJaA9DCHPYfccwYnJAlIaUUpRoFUutaBZHQKfQ5KSxJNF1fZQoaAZoCWgPQwgr2bERCLdxQJSGlFKUaBVLt2gWR0Cn0OzcqOLjdX2UKGgGaAloD0MIvvc3aO/qcUCUhpRSlGgVS5doFkdAp9EtlXiiqXV9lChoBmgJaA9DCKeyKOyidXFAlIaUUpRoFUuvaBZHQKfRLCoCMgl1fZQoaAZoCWgPQwgUev1J/LluQJSGlFKUaBVLk2gWR0Cn0T56+nIidX2UKGgGaAloD0MIV5V9V8Thc0CUhpRSlGgVS6VoFkdAp9FjD4xk/nV9lChoBmgJaA9DCH8SnztBPHJAlIaUUpRoFUu8aBZHQKfRfz5oGpx1fZQoaAZoCWgPQwhsIjMX+CNxQJSGlFKUaBVLq2gWR0Cn0YUwrUb2dX2UKGgGaAloD0MIkunQ6TmxckCUhpRSlGgVS6hoFkdAp9G2sNlRQHV9lChoBmgJaA9DCHfZrzvdgnNAlIaUUpRoFUvVaBZHQKfR2mNzbN91fZQoaAZoCWgPQwhY5xiQPcBxQJSGlFKUaBVLvWgWR0Cn0fHK4hECdX2UKGgGaAloD0MI3lomwzGHckCUhpRSlGgVS89oFkdAp9IAFC9h7XV9lChoBmgJaA9DCGnhsgpbOXNAlIaUUpRoFUvOaBZHQKfSFzMA3kx1fZQoaAZoCWgPQwhpNo/DoH9yQJSGlFKUaBVLmGgWR0Cn0lKAavRrdX2UKGgGaAloD0MIEayql98cckCUhpRSlGgVS8BoFkdAp9JRhhH9WXV9lChoBmgJaA9DCFPNrKXAq3FAlIaUUpRoFUvPaBZHQKfSZkzXSSh1fZQoaAZoCWgPQwhwz/OnjeZxQJSGlFKUaBVLj2gWR0Cn0oCuloDgdX2UKGgGaAloD0MIMjz2sxi2ckCUhpRSlGgVS5xoFkdAp9KgsEq2B3V9lChoBmgJaA9DCI6R7BHqInRAlIaUUpRoFUvOaBZHQKfSqXVsk6d1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 690,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
lunar-ppo/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f8d6c2948be4de9eb7d90a242e6d1f476bb1af6f6d5b2db0d2bac28a9cba292
|
3 |
+
size 87929
|
lunar-ppo/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10766ad239c2cd488bbefd7d928272a66b80b1add0d632858284a16ff1bc157d
|
3 |
+
size 43393
|
lunar-ppo/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar-ppo/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (215 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 272.0890566740851, "std_reward": 72.60408552117885, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-12T15:12:06.621313"}
|