Update README.md
Browse files
README.md
CHANGED
@@ -20,3 +20,232 @@ language:
|
|
20 |
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
21 |
|
22 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
21 |
|
22 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
23 |
+
|
24 |
+
!pip uninstall unsloth -y
|
25 |
+
!pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
|
26 |
+
!pip install --upgrade torch
|
27 |
+
!pip install --upgrade xformers
|
28 |
+
|
29 |
+
# Install Flash Attention 2 for softcapping support
|
30 |
+
import torch
|
31 |
+
if torch.cuda.get_device_capability()[0] >= 8:
|
32 |
+
!pip install --no-deps packaging ninja einops "flash-attn>=2.6.3"
|
33 |
+
|
34 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
35 |
+
from unsloth import FastLanguageModel
|
36 |
+
import torch
|
37 |
+
|
38 |
+
max_seq_length = 512
|
39 |
+
dtype = None
|
40 |
+
load_in_4bit = True
|
41 |
+
|
42 |
+
model_id = "llm-jp/llm-jp-3-13b"
|
43 |
+
new_model_id = "llm-jp-3-13b-last"
|
44 |
+
|
45 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
46 |
+
model_name=model_id,
|
47 |
+
dtype=dtype,
|
48 |
+
load_in_4bit=load_in_4bit,
|
49 |
+
trust_remote_code=True,
|
50 |
+
)
|
51 |
+
|
52 |
+
# SFT用のモデルを用意
|
53 |
+
model = FastLanguageModel.get_peft_model(
|
54 |
+
model,
|
55 |
+
r=32,
|
56 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
|
57 |
+
"gate_proj", "up_proj", "down_proj"],
|
58 |
+
lora_alpha=32,
|
59 |
+
lora_dropout=0.05,
|
60 |
+
bias="none",
|
61 |
+
use_gradient_checkpointing="unsloth",
|
62 |
+
random_state=3407,
|
63 |
+
use_rslora=False,
|
64 |
+
loftq_config=None,
|
65 |
+
max_seq_length=max_seq_length,
|
66 |
+
)
|
67 |
+
|
68 |
+
# https://huggingface.co/settings/tokens
|
69 |
+
HF_TOKEN = "your-token" # @param {type:"string"}
|
70 |
+
|
71 |
+
from datasets import load_dataset, concatenate_datasets
|
72 |
+
|
73 |
+
# データセットのロード
|
74 |
+
ichikara_dataset = load_dataset("json", data_files="/content/ichikara-instruction-003-001-1.json")
|
75 |
+
elyza_dataset = load_dataset("elyza/ELYZA-tasks-100")
|
76 |
+
|
77 |
+
EOS_TOKEN = tokenizer.eos_token #
|
78 |
+
|
79 |
+
# 学習時のプロンプトフォーマットの定義
|
80 |
+
prompt = """### 指示
|
81 |
+
{}
|
82 |
+
### 回答
|
83 |
+
{}"""
|
84 |
+
|
85 |
+
"""
|
86 |
+
formatting_prompts_func: 各データをプロンプトに合わせた形式に合わせる
|
87 |
+
"""
|
88 |
+
def formatting_prompts_func(examples):
|
89 |
+
input = examples["text"]
|
90 |
+
output = examples["output"]
|
91 |
+
text = prompt.format(input, output) + EOS_TOKEN
|
92 |
+
return {"formatted_text": text}
|
93 |
+
|
94 |
+
# ichikara-instruction のデータフォーマット
|
95 |
+
ichikara_dataset = ichikara_dataset.map(
|
96 |
+
formatting_prompts_func,
|
97 |
+
num_proc=4,
|
98 |
+
)
|
99 |
+
|
100 |
+
# ELYZA-tasks-100 データセットのフォーマット関数
|
101 |
+
def elyza_formatting_prompts_func(examples):
|
102 |
+
input = examples["input"]
|
103 |
+
output = examples["output"]
|
104 |
+
text = prompt.format(input, output) + EOS_TOKEN
|
105 |
+
return {"formatted_text": text}
|
106 |
+
|
107 |
+
# ELYZA-tasks-100 のデータフォーマット
|
108 |
+
elyza_dataset = elyza_dataset.map(
|
109 |
+
elyza_formatting_prompts_func,
|
110 |
+
num_proc=4
|
111 |
+
)
|
112 |
+
|
113 |
+
from datasets import concatenate_datasets
|
114 |
+
|
115 |
+
# ichikara-instruction と ELYZA-tasks-100 を統合
|
116 |
+
combined_dataset = concatenate_datasets([
|
117 |
+
ichikara_dataset["train"],
|
118 |
+
elyza_dataset["test"]
|
119 |
+
])
|
120 |
+
|
121 |
+
# データ品質チェック
|
122 |
+
# 1. ランダムサンプルを確認
|
123 |
+
import random
|
124 |
+
sample_indices = random.sample(range(len(combined_dataset)), 10)
|
125 |
+
for idx in sample_indices:
|
126 |
+
print(combined_dataset[idx]["formatted_text"])
|
127 |
+
|
128 |
+
# 2. 自動検査ルール
|
129 |
+
# 短すぎるデータをチェック(Noneチェックを追加)
|
130 |
+
short_data = combined_dataset.filter(
|
131 |
+
lambda x: x["input"] is not None and x["output"] is not None and (len(x["input"]) < 5 or len(x["output"]) < 5)
|
132 |
+
)
|
133 |
+
print(f"\n短すぎるデータ数: {len(short_data)}")
|
134 |
+
|
135 |
+
# 指示と回答が同一のデータ(Noneチェックを追加)
|
136 |
+
duplicate_data = combined_dataset.filter(
|
137 |
+
lambda x: x["input"] is not None and x["output"] is not None and x["input"].strip() == x["output"].strip()
|
138 |
+
)
|
139 |
+
print(f"\n指示と回答が同一のデータ数: {len(duplicate_data)}")
|
140 |
+
|
141 |
+
# 問題のあるデータをフィルタリング(Noneチェックを追加)
|
142 |
+
filtered_dataset = combined_dataset.filter(
|
143 |
+
lambda x: x["input"] is not None and x["output"] is not None and len(x["input"]) > 5 and len(x["output"]) > 5 and x["input"].strip() != x["output"].strip()
|
144 |
+
)
|
145 |
+
|
146 |
+
print(f"元のデータ数: {len(combined_dataset)}")
|
147 |
+
print(f"フィルタリング後のデータ数: {len(filtered_dataset)}")
|
148 |
+
print(f"除外されたデータ数: {len(combined_dataset) - len(filtered_dataset)}")
|
149 |
+
|
150 |
+
# フィルタリング後のデータの例を確認
|
151 |
+
print(filtered_dataset[0])
|
152 |
+
|
153 |
+
"""
|
154 |
+
training_arguments: 学習の設定
|
155 |
+
"""
|
156 |
+
from trl import SFTTrainer
|
157 |
+
from transformers import TrainingArguments
|
158 |
+
from unsloth import is_bfloat16_supported
|
159 |
+
|
160 |
+
trainer = SFTTrainer(
|
161 |
+
model=model,
|
162 |
+
tokenizer=tokenizer,
|
163 |
+
train_dataset=filtered_dataset,
|
164 |
+
max_seq_length=max_seq_length,
|
165 |
+
dataset_text_field="formatted_text",
|
166 |
+
packing=False,
|
167 |
+
args=TrainingArguments(
|
168 |
+
per_device_train_batch_size=2,
|
169 |
+
gradient_accumulation_steps=4,
|
170 |
+
num_train_epochs=3,
|
171 |
+
logging_steps=10,
|
172 |
+
warmup_steps=10,
|
173 |
+
save_steps=50,
|
174 |
+
save_total_limit=2,
|
175 |
+
max_steps=200,
|
176 |
+
learning_rate=2e-4,
|
177 |
+
fp16=not is_bfloat16_supported(),
|
178 |
+
bf16=is_bfloat16_supported(),
|
179 |
+
group_by_length=True,
|
180 |
+
seed=3407,
|
181 |
+
output_dir="outputs",
|
182 |
+
report_to="none",
|
183 |
+
),
|
184 |
+
)
|
185 |
+
|
186 |
+
#@title 学習実行
|
187 |
+
trainer_stats = trainer.train()
|
188 |
+
|
189 |
+
import json
|
190 |
+
from datasets import load_dataset
|
191 |
+
|
192 |
+
dataset = load_dataset("json", data_files="/content/elyza-tasks-100-TV_0.jsonl", split="train")
|
193 |
+
|
194 |
+
datasets = []
|
195 |
+
with open("/content/elyza-tasks-100-TV_0.jsonl", "r", encoding="utf-8") as f:
|
196 |
+
item = ""
|
197 |
+
for line in f:
|
198 |
+
line = line.strip()
|
199 |
+
item += line
|
200 |
+
if item.endswith("}"):
|
201 |
+
datasets.append(json.loads(item))
|
202 |
+
item = ""
|
203 |
+
|
204 |
+
from tqdm import tqdm
|
205 |
+
import json
|
206 |
+
|
207 |
+
# 推論するためにモデルのモードを変更
|
208 |
+
FastLanguageModel.for_inference(model)
|
209 |
+
|
210 |
+
results = []
|
211 |
+
for dt in tqdm(datasets):
|
212 |
+
try:
|
213 |
+
input_text = dt["input"]
|
214 |
+
|
215 |
+
# プロンプトを生成
|
216 |
+
prompt = f"### 指示\n{input_text}\n次の要件を満たしてください:\n1. 簡潔に回答する。\n2. 必要なら箇条書きを使用して要点を整理する。\n3. 指示された内容に忠実に答える。\n### 回答\n"
|
217 |
+
|
218 |
+
|
219 |
+
# トークナイズ
|
220 |
+
inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
|
221 |
+
|
222 |
+
# 推論
|
223 |
+
outputs = model.generate(
|
224 |
+
**inputs,
|
225 |
+
max_new_tokens=512,
|
226 |
+
use_cache=True,
|
227 |
+
do_sample=False,
|
228 |
+
repetition_penalty=1.2,
|
229 |
+
)
|
230 |
+
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
|
231 |
+
|
232 |
+
# 結果を保存
|
233 |
+
results.append({"task_id": dt["task_id"], "input": input_text, "output": prediction})
|
234 |
+
except Exception as e:
|
235 |
+
print(f"Error processing task_id {dt.get('task_id', 'Unknown')}: {e}")
|
236 |
+
results.append({"task_id": dt.get("task_id", "Unknown"), "input": dt.get("input", ""), "output": "Error"})
|
237 |
+
|
238 |
+
|
239 |
+
# 結果をJSONL形式で保存
|
240 |
+
output_file_jsonl = "/content/llm-jp-3-13b-last.jsonl"
|
241 |
+
with open(output_file_jsonl, "w", encoding="utf-8") as f:
|
242 |
+
for result in results:
|
243 |
+
f.write(json.dumps(result, ensure_ascii=False) + "\n")
|
244 |
+
|
245 |
+
model.push_to_hub_merged(
|
246 |
+
new_model_id,
|
247 |
+
tokenizer=tokenizer,
|
248 |
+
save_method="lora",
|
249 |
+
token=HF_TOKEN,
|
250 |
+
private=True
|
251 |
+
)
|