File size: 9,702 Bytes
c1cb6c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
library_name: transformers
language:
- ru
license: apache-2.0
base_model: PekingU/rtdetr_r50vd_coco_o365
tags:
- generated_from_trainer
model-index:
- name: RT-DETR Russian car plate detection with classification by type
  results: []
---

# RT-DETR Russian car plate detection with classification by type

This model is a fine-tuned version of [PekingU/rtdetr_r50vd_coco_o365](https://huggingface.co/PekingU/rtdetr_r50vd_coco_o365) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 4.1673
- Map: 0.8829
- Map 50: 0.9858
- Map 75: 0.9736
- Map Car-plates-and-these-types: -1.0
- Map Large: 0.9689
- Map Medium: 0.9125
- Map N P: 0.857
- Map P P: 0.9087
- Map Small: 0.696
- Mar 1: 0.8686
- Mar 10: 0.9299
- Mar 100: 0.9357
- Mar 100 Car-plates-and-these-types: -1.0
- Mar 100 N P: 0.9169
- Mar 100 P P: 0.9545
- Mar Large: 0.9844
- Mar Medium: 0.958
- Mar Small: 0.8354

## Model description

Модель детекции номерных знаков автомобилей РФ, в данный момент 2 класса n_p и p_p, обычные номера и полицейские

## Intended uses & limitations

Пример использования:
<pre>
from transformers import AutoModelForObjectDetection, AutoImageProcessor
import torch
import supervision as sv


DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AutoModelForObjectDetection.from_pretrained('Garon16/rtdetr_r50vd_russia_plate_detector').to(DEVICE)
processor = AutoImageProcessor.from_pretrained('Garon16/rtdetr_r50vd_russia_plate_detector')

path = 'path/to/image'
image = Image.open(path)
inputs = processor(image, return_tensors="pt").to(DEVICE)
with torch.no_grad():
    outputs = model(**inputs)
w, h = image.size
results = processor.post_process_object_detection(
    outputs, target_sizes=[(h, w)], threshold=0.3)
detections = sv.Detections.from_transformers(results[0]).with_nms(0.3)
labels = [
    model.config.id2label[class_id]
    for class_id
    in detections.class_id
]

annotated_image = image.copy()
annotated_image = sv.BoundingBoxAnnotator().annotate(annotated_image, detections)
annotated_image = sv.LabelAnnotator().annotate(annotated_image, detections, labels=labels)
  
grid = sv.create_tiles(
  [annotated_image],
  grid_size=(1, 1),
  single_tile_size=(512, 512),
  tile_padding_color=sv.Color.WHITE,
  tile_margin_color=sv.Color.WHITE
)
sv.plot_image(grid, size=(10, 10))
</pre>

## Training and evaluation data

Обучал на своём датасете - https://universe.roboflow.com/testcarplate/russian-license-plates-classification-by-this-type

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Map    | Map 50 | Map 75 | Map Car-plates-and-these-types | Map Large | Map Medium | Map N P | Map P P | Map Small | Mar 1  | Mar 10 | Mar 100 | Mar 100 Car-plates-and-these-types | Mar 100 N P | Mar 100 P P | Mar Large | Mar Medium | Mar Small |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:------------------------------:|:---------:|:----------:|:-------:|:-------:|:---------:|:------:|:------:|:-------:|:----------------------------------:|:-----------:|:-----------:|:---------:|:----------:|:---------:|
| No log        | 1.0   | 109  | 64.6127         | 0.035  | 0.0558 | 0.0379 | -1.0                           | 0.0039    | 0.0663     | 0.0191  | 0.0508  | 0.0071    | 0.1523 | 0.3009 | 0.3361  | -1.0                               | 0.3179      | 0.3543      | 0.7625    | 0.3788     | 0.1157    |
| No log        | 2.0   | 218  | 15.4008         | 0.8237 | 0.9418 | 0.9327 | -1.0                           | 0.893     | 0.879      | 0.7945  | 0.8529  | 0.4319    | 0.8203 | 0.8924 | 0.9018  | -1.0                               | 0.8766      | 0.9269      | 0.9656    | 0.9324     | 0.7653    |
| No log        | 3.0   | 327  | 9.4050          | 0.8439 | 0.9566 | 0.9479 | -1.0                           | 0.9439    | 0.8908     | 0.8158  | 0.872   | 0.5171    | 0.8416 | 0.908  | 0.9144  | -1.0                               | 0.9002      | 0.9286      | 0.9781    | 0.9368     | 0.8051    |
| No log        | 4.0   | 436  | 7.9164          | 0.8493 | 0.9665 | 0.9543 | -1.0                           | 0.9567    | 0.8903     | 0.8338  | 0.8648  | 0.5581    | 0.8481 | 0.9159 | 0.9267  | -1.0                               | 0.9173      | 0.936       | 0.975     | 0.949      | 0.8185    |
| 70.2867       | 5.0   | 545  | 6.8177          | 0.8525 | 0.9723 | 0.9602 | -1.0                           | 0.9521    | 0.8918     | 0.8234  | 0.8816  | 0.6025    | 0.8438 | 0.9214 | 0.9279  | -1.0                               | 0.9181      | 0.9378      | 0.975     | 0.9492     | 0.8211    |
| 70.2867       | 6.0   | 654  | 6.0182          | 0.854  | 0.9744 | 0.9619 | -1.0                           | 0.9574    | 0.8912     | 0.8251  | 0.8829  | 0.6123    | 0.8438 | 0.9176 | 0.927   | -1.0                               | 0.9137      | 0.9403      | 0.9781    | 0.9503     | 0.8163    |
| 70.2867       | 7.0   | 763  | 5.4024          | 0.8731 | 0.9772 | 0.9667 | -1.0                           | 0.9635    | 0.9113     | 0.8462  | 0.9001  | 0.6376    | 0.8608 | 0.9275 | 0.9336  | -1.0                               | 0.9202      | 0.9471      | 0.9781    | 0.956      | 0.8266    |
| 70.2867       | 8.0   | 872  | 5.2224          | 0.8726 | 0.9809 | 0.9767 | -1.0                           | 0.9582    | 0.9069     | 0.8487  | 0.8966  | 0.6472    | 0.8625 | 0.9265 | 0.9301  | -1.0                               | 0.9137      | 0.9464      | 0.9875    | 0.9528     | 0.8232    |
| 70.2867       | 9.0   | 981  | 4.7844          | 0.8679 | 0.9821 | 0.9687 | -1.0                           | 0.9574    | 0.9023     | 0.8451  | 0.8907  | 0.6382    | 0.8606 | 0.9213 | 0.9283  | -1.0                               | 0.9119      | 0.9448      | 0.9844    | 0.952      | 0.8165    |
| 4.2466        | 10.0  | 1090 | 5.1437          | 0.8729 | 0.9816 | 0.9762 | -1.0                           | 0.9577    | 0.9028     | 0.8448  | 0.901   | 0.6686    | 0.8605 | 0.9296 | 0.9359  | -1.0                               | 0.9203      | 0.9514      | 0.9781    | 0.9567     | 0.8413    |
| 4.2466        | 11.0  | 1199 | 4.5169          | 0.8858 | 0.9828 | 0.9768 | -1.0                           | 0.9707    | 0.9162     | 0.8628  | 0.9087  | 0.6734    | 0.8695 | 0.9264 | 0.931   | -1.0                               | 0.9121      | 0.95        | 0.9781    | 0.9538     | 0.823     |
| 4.2466        | 12.0  | 1308 | 4.5858          | 0.8813 | 0.9865 | 0.9744 | -1.0                           | 0.9623    | 0.9126     | 0.8585  | 0.9041  | 0.6815    | 0.8671 | 0.9308 | 0.9355  | -1.0                               | 0.9185      | 0.9526      | 0.9812    | 0.9583     | 0.8308    |
| 4.2466        | 13.0  | 1417 | 4.5345          | 0.8778 | 0.9843 | 0.9726 | -1.0                           | 0.957     | 0.9101     | 0.8526  | 0.903   | 0.6754    | 0.8628 | 0.9281 | 0.9335  | -1.0                               | 0.9158      | 0.9512      | 0.9812    | 0.9557     | 0.8314    |
| 3.589         | 14.0  | 1526 | 4.3003          | 0.8885 | 0.9857 | 0.9759 | -1.0                           | 0.9656    | 0.9189     | 0.8642  | 0.9128  | 0.6957    | 0.8724 | 0.9334 | 0.9375  | -1.0                               | 0.9194      | 0.9555      | 0.9875    | 0.959      | 0.8375    |
| 3.589         | 15.0  | 1635 | 4.3999          | 0.8819 | 0.986  | 0.9741 | -1.0                           | 0.9606    | 0.9118     | 0.8575  | 0.9064  | 0.6892    | 0.8659 | 0.9283 | 0.9336  | -1.0                               | 0.9137      | 0.9534      | 0.9844    | 0.9566     | 0.8245    |
| 3.589         | 16.0  | 1744 | 4.2719          | 0.8796 | 0.986  | 0.9726 | -1.0                           | 0.9661    | 0.9093     | 0.8543  | 0.905   | 0.6914    | 0.8649 | 0.927  | 0.9313  | -1.0                               | 0.9121      | 0.9505      | 0.9875    | 0.9543     | 0.8266    |
| 3.589         | 17.0  | 1853 | 4.2497          | 0.8838 | 0.9845 | 0.9733 | -1.0                           | 0.9656    | 0.9141     | 0.8599  | 0.9077  | 0.6997    | 0.8678 | 0.9295 | 0.9352  | -1.0                               | 0.9141      | 0.9562      | 0.9812    | 0.958      | 0.832     |
| 3.589         | 18.0  | 1962 | 4.2807          | 0.8829 | 0.9855 | 0.9754 | -1.0                           | 0.9673    | 0.9121     | 0.8558  | 0.9099  | 0.6964    | 0.8683 | 0.9286 | 0.9337  | -1.0                               | 0.9126      | 0.9548      | 0.9844    | 0.9555     | 0.8357    |
| 3.2442        | 19.0  | 2071 | 4.1978          | 0.8835 | 0.9861 | 0.9748 | -1.0                           | 0.9675    | 0.9121     | 0.8559  | 0.911   | 0.6932    | 0.8691 | 0.9272 | 0.9336  | -1.0                               | 0.9134      | 0.9538      | 0.9844    | 0.9557     | 0.8337    |
| 3.2442        | 20.0  | 2180 | 4.1673          | 0.8829 | 0.9858 | 0.9736 | -1.0                           | 0.9689    | 0.9125     | 0.857   | 0.9087  | 0.696     | 0.8686 | 0.9299 | 0.9357  | -1.0                               | 0.9169      | 0.9545      | 0.9844    | 0.958      | 0.8354    |


### Framework versions

- Transformers 4.46.0.dev0
- Pytorch 2.5.0+cu124
- Tokenizers 0.20.1