--- library_name: transformers language: - ru license: apache-2.0 base_model: PekingU/rtdetr_r50vd_coco_o365 tags: - object-detection - pytorch-lightning - russian-license-plates - rt-detr model-index: - name: RT-DETR Russian car plate detection with classification by type fine tuned with pytorch lighting results: [] --- ## Model description Модель детекции номерных знаков автомобилей РФ, в данный момент 2 класса n_p и p_p, обычные номера и полицейские ## Intended uses & limitations Пример использования:
from transformers import AutoModelForObjectDetection, AutoImageProcessor import torch import supervision as sv DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = AutoModelForObjectDetection.from_pretrained('Garon16/rtdetr_r50vd_russia_plate_detector_lightning').to(DEVICE) processor = AutoImageProcessor.from_pretrained('Garon16/rtdetr_r50vd_russia_plate_detector_lightning') path = 'path/to/image' image = Image.open(path) inputs = processor(image, return_tensors="pt").to(DEVICE) with torch.no_grad(): outputs = model(**inputs) w, h = image.size results = processor.post_process_object_detection( outputs, target_sizes=[(h, w)], threshold=0.3) detections = sv.Detections.from_transformers(results[0]).with_nms(0.3) labels = [ model.config.id2label[class_id] for class_id in detections.class_id ] annotated_image = image.copy() annotated_image = sv.BoundingBoxAnnotator().annotate(annotated_image, detections) annotated_image = sv.LabelAnnotator().annotate(annotated_image, detections, labels=labels) grid = sv.create_tiles( [annotated_image], grid_size=(1, 1), single_tile_size=(512, 512), tile_padding_color=sv.Color.WHITE, tile_margin_color=sv.Color.WHITE ) sv.plot_image(grid, size=(10, 10))## Training and evaluation data Обучал на своём датасете - https://universe.roboflow.com/testcarplate/russian-license-plates-classification-by-this-type ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - seed: 42 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 20 ### Training results Пока не разобрался, как при дообучении лайтингом автоматом всё отправить сюда ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.5.0+cu124 - Tokenizers 0.20.1