--- library_name: transformers language: - pt license: mit base_model: microsoft/speechT5_tts tags: - generated_from_trainer datasets: - ylacombe/cml-tts model-index: - name: speechT5_tts-finetuned-cml-tts2 results: [] pipeline_tag: text-to-speech --- # speechT5_tts-finetuned-cml-tts2 This model is a fine-tuned version of [microsoft/speechT5_tts](https://huggingface.co/microsoft/speechT5_tts) on the cml-tts dataset. It achieves the following results on the evaluation set: - Loss: 0.4595 ## Model description SpeechT5 model trained for Audio course Unit 6 hands-on on Portugues language cml-tts2 dataset for 5 hours. Honestly it is not that good but definetly better then initial SpeechT5. More information here https://outleys.site/en/development/AI/hugface-audio-course-handson-unit-6-exercise/ ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.99) and epsilon=1e-07 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 16000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 0.4819 | 0.0625 | 1000 | 0.5007 | | 0.4364 | 0.125 | 2000 | 0.4965 | | 0.4224 | 0.1875 | 3000 | 0.4841 | | 0.4006 | 1.0473 | 4000 | 0.4782 | | 0.3993 | 1.1098 | 5000 | 0.4728 | | 0.3993 | 1.1723 | 6000 | 0.4687 | | 0.389 | 2.032 | 7000 | 0.4684 | | 0.3827 | 2.0945 | 8000 | 0.4665 | | 0.3895 | 2.157 | 9000 | 0.4702 | | 0.3829 | 3.0168 | 10000 | 0.4648 | | 0.3717 | 3.0793 | 11000 | 0.4631 | | 0.384 | 3.1418 | 12000 | 0.4627 | | 0.3802 | 4.0015 | 13000 | 0.4601 | | 0.3667 | 4.064 | 14000 | 0.4610 | | 0.3757 | 4.1265 | 15000 | 0.4606 | | 0.375 | 4.189 | 16000 | 0.4595 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3