Geerath commited on
Commit
ad8fc46
·
verified ·
1 Parent(s): 77f3d9f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +105 -125
README.md CHANGED
@@ -15,31 +15,24 @@ tags: []
15
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
  [More Information Needed]
45
 
@@ -57,143 +50,130 @@ This is the model card of a 🤗 transformers model that has been pushed on the
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
  [More Information Needed]
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
  Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
  #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92
 
93
  #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
  ### Testing Data, Factors & Metrics
108
 
109
  #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
 
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
 
131
  #### Summary
132
 
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
15
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
18
+ This is the model used to seperate long questions into seperate questions if possible.
19
 
20
+ - **Developed by:** [Geerath Bhat]
21
+ - **Funded by [optional]:** [Geerath Bhat]
22
+ - **Shared by [optional]:** [Geerath Bhat]
23
+ - **Model type:** [Fine-tuned Instruct LLM]
24
+ - **Language(s) (NLP):** [English]
25
+ - **License:** []
26
+ - **Finetuned from model [optional]:** []
27
 
 
 
 
 
 
 
 
28
 
29
  ## Uses
30
 
31
+ We can use this model to seperate long context data into seperate meaningful parts.
32
 
33
  ### Direct Use
34
 
35
+ You can use this model and soon we will provide a demo version also.
36
 
37
  [More Information Needed]
38
 
 
50
 
51
  ## Bias, Risks, and Limitations
52
 
53
+ The model will not work in very complex situations but we have measured it's perfommance and it performs well on most complex tasks.
54
 
55
  [More Information Needed]
56
 
57
  ### Recommendations
58
 
59
+ Give a complex nested questions and it will seperate those questions or contexr into meaningful parts.
60
 
61
  Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
62
 
63
  ## How to Get Started with the Model
64
 
65
+ ```
66
+ from transformers import AutoModelForSeq2SeqLM
67
+ import nltk
68
+ nltk.download('punkt')
69
+ nltk.download('punkt_tab')
70
+ import string
71
+ from transformers import AutoTokenizer
72
+ ```
73
+
74
+ # Get the tokenizer
75
+
76
+ ```
77
+ model_checkpoint = "Geerath/seperator"
78
+ tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
79
+ ```
80
+
81
+ # Load the model
82
+ ```
83
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
84
+
85
+ max_input_length = 512
86
+ ```
87
+ ## Inference
88
+ ```
89
+ prompt = """
90
+ You are given a query that combines multiple questions into a single string. Your task is to break down this combined query into individual questions, ensuring each question is clear and stands alone."""
91
+ text = """
92
+ Where is IISc Located, what is GDP?, How can we utilize the power of wind mill and what is photosynthesis?
93
+ """
94
+
95
+ inputs = [prompt + text]
96
+
97
+ inputs = tokenizer(inputs, max_length=max_input_length, truncation=True, return_tensors="pt")
98
+ output = model.generate(**inputs, num_beams=8, do_sample=True, min_length=10, max_length=512)
99
+ decoded_output = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
100
+ predicted_title = nltk.sent_tokenize(decoded_output.strip())
101
+
102
+ print(predicted_title)
103
+ ```
104
+ ## Result - ['Where is IISc Located, what is GDP?, How can we utilize the power of wind mill, and what is photosynthesis?']
105
 
106
  ### Training Data
107
 
108
+ Custom dataset generated using multiple LLMs.
 
 
109
 
110
  ### Training Procedure
111
 
112
+ Finetuned T5 on custom dataset
113
 
114
  #### Preprocessing [optional]
115
+ ```
116
+ max_input_length = 512
117
+ max_target_length = 512
118
+ def clean_text(text):
119
+ sentences = nltk.sent_tokenize(text.strip())
120
+ sentences_cleaned = [s for sent in sentences for s in sent.split("\n")]
121
+ sentences_cleaned_no_titles = [sent for sent in sentences_cleaned
122
+ if len(sent) > 0 and
123
+ sent[-1] in string.punctuation]
124
+ text_cleaned = "\n".join(sentences_cleaned_no_titles)
125
+ return text_cleaned
126
+
127
+ def preprocess_data(examples):
128
+ texts_cleaned = [text for text in examples["input"]]
129
+ inputs = [prefix + text for text in texts_cleaned]
130
+ model_inputs = tokenizer(inputs, max_length=max_input_length, truncation=True)
131
+ with tokenizer.as_target_tokenizer():
132
+ labels = tokenizer(examples["output"], max_length=max_target_length,
133
+ truncation=True)
134
+
135
+ model_inputs["labels"] = labels["input_ids"]
136
+ return model_inputs
137
+ ```
138
 
139
  #### Training Hyperparameters
140
+ ```
141
+ batch_size = 16
142
+ args = Seq2SeqTrainingArguments(
143
+ model_dir,
144
+ evaluation_strategy="steps",
145
+ eval_steps=100,
146
+ logging_strategy="steps",
147
+ logging_steps=100,
148
+ save_strategy="steps",
149
+ save_steps=200,
150
+ learning_rate=4e-5,
151
+ per_device_train_batch_size=batch_size,
152
+ per_device_eval_batch_size=batch_size,
153
+ weight_decay=0.01,
154
+ save_total_limit=3,
155
+ num_train_epochs=10,
156
+ predict_with_generate=True,
157
+ fp16=True,
158
+ load_best_model_at_end=True,
159
+ metric_for_best_model="rouge1",
160
+ #push_to_hub=True
161
+ )
162
+ ```
163
 
164
  ## Evaluation
165
 
166
+
167
 
168
  ### Testing Data, Factors & Metrics
169
 
170
  #### Testing Data
171
 
172
+ Custom data prepared.
 
 
173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174
 
175
  #### Summary
176
 
177
+ Model take a input as a text and gives output as list of text seperated by commas.
178
+ Example - Input -> Where is IISc Located, what is GDP?, How can we utilize the power of wind mill and what is photosynthesis?
179
+ Output -> ['Where is IISc Located, what is GDP?, How can we utilize the power of wind mill, and what is photosynthesis?']