--- license: apache-2.0 pipeline_tag: image-text-to-text --- # HermesFlow Official Repository of the paper: *[HermesFlow](https://github.com/Gen-Verse/HermesFlow)*. <p align="left"> <a href='https://arxiv.org/abs/2502.12148'> <img src='https://img.shields.io/badge/Arxiv-2502.12148-A42C25?style=flat&logo=arXiv&logoColor=A42C25'></a> <a href='https://github.com/Gen-Verse/HermesFlow'> <img src='https://img.shields.io/badge/GitHub-Code-black?style=flat&logo=github&logoColor=white'></a> </p> <img src="./pipeline.png" style="zoom:100%;" /> <img src="./image.png" style="zoom:100%;" /> <img src="./image-1.png" style="zoom:100%;" /> ## News🔥🔥🔥 * Feb.18, 2025. Our checkpoints are publicly available on [HuggingFace Repo](https://huggingface.co/Gen-Verse/HermesFlow). ## Introduction HermesFlow is a general alignment framework for multimodal LLMs, which cruate homologous preference data itself and utilize self-play iterative optimization with Pair-DPO to seamlessly close the gap between multimodal understanding and generation. ## Citation ``` @article{yang2025hermesflow, title={HermesFlow: Seamlessly Closing the Gap in Multimodal Understanding and Generation}, author={Yang, Ling and Zhang, Xinchen and Tian, Ye and Shang, Chenming and Xu, Minghao and Zhang, Wentao and Cui, Bin}, journal={arXiv preprint arXiv:2502.12148}, year={2025} } ```