GenVRadmin commited on
Commit
3df4d03
1 Parent(s): c227c62

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -174
README.md CHANGED
@@ -1,199 +1,81 @@
1
  ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
 
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
 
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
 
 
 
 
 
 
 
 
 
 
 
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
 
 
 
 
 
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
 
186
 
187
- [More Information Needed]
 
 
 
 
 
188
 
189
- ## More Information [optional]
 
 
190
 
191
- [More Information Needed]
 
192
 
193
- ## Model Card Authors [optional]
 
194
 
195
- [More Information Needed]
 
 
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
1
  ---
2
+ license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
 
6
 
7
+ This model is a part of two model series, AryaBhatta-1 and AryaBhatta-2 and is finetuned from HuggingFaceH4/zephyr-7b-gemma-v0.1 or Google/gemma and is finetuned on 9 Indian languages (Hindi, Tamil, Punjabi, Bengali, Gujarati, Oriya, Telugu, Kannada, Malayalam) plus English.
8
+ To improve the resoning and maths skills, we first SFT tune the gemma on Microsoft's Orca datasets.
9
 
10
+ There are two models. One finetuned on Google's Gemma and one fine-tuned on Zephyr's Gemma base. Repo for other one (Zephyr one): GenVRadmin/AryaBhatta-GemmaOrca-2-Merged
11
 
 
12
 
13
+ We utilize Orca maths Hindi dataset: GenVRadmin/Aryabhatta-Orca-Maths-Hindi \
14
+ And original Orca maths dataset: microsoft/orca-math-word-problems-200k
15
 
16
+ This pushes the MATHS score from 24.3 in Gemma-7B to 25.5 in Zephyr-Gemma and 31.6 in GemmaOrca.
17
 
18
+ The model is then finetuned on GenVR's Samvaad datasets (GenVRadmin/Samvaad-Indic-Positive and GenVRadmin/Samvaad-Tamil-Mixtral and a subset of GenVRadmin/Samvaad-Mixed-Language-3).
19
 
20
+ This is then finetuned on various open sourced datasets like:
21
 
22
+ Telugu-LLM-Labs/yahma_alpaca_cleaned_telugu_filtered_and_romanized \
23
+ Telugu-LLM-Labs/teknium_GPTeacher_general_instruct_telugu_filtered_and_romanized \
24
+ abhinand/tamil-alpaca \
25
+ Tensoic/airoboros-3.2_kn \
26
+ Tensoic/gpt-teacher_kn \
27
+ Tensoic/Alpaca-Gujarati \
28
+ HydraIndicLM/bengali_alpaca_dolly_67k \
29
+ Open-Orca/OpenOrca \
30
+ pankajmathur/alpaca_orca \
31
+ OdiaGenAI/Odia_Alpaca_instructions_52k \
32
+ OdiaGenAI/gpt-teacher-roleplay-odia-3k \
33
+ GenVRadmin/Samvaad-Punjabi-Mini \
34
+ pankajmathur/WizardLM_Orca
35
 
36
+ The model achieves following scores on benchmarks:
37
 
38
+ Model AGIEval GPT4All TruthfulQA BigBench Average ⬇️ \
39
+ AryaBhatta-GemmaOrca 35.9 72.26 53.85 40.35 50.59 \
40
+ zephyr-7b-beta 37.52 71.77 55.26 39.77 51.08 \
41
+ zephyr-7b-gemma-v0.1 34.22 66.37 52.19 37.10 47.47 \
42
+ mlabonne/Gemmalpaca-7B 21.6 40.87 44.85 30.49 34.45 \
43
+ google/gemma-7b-it 21.33 40.84 41.70 30.25 33.53
44
 
 
45
 
 
46
 
 
47
 
 
48
 
49
+ How to use:-
50
+ ```
51
+ from peft import AutoPeftModelForCausalLM
52
+ from transformers import AutoTokenizer
53
 
54
+ model = AutoPeftModelForCausalLM.from_pretrained(
55
+ "GenVRadmin/AryaBhatta-GemmaOrca",
56
+ load_in_4bit = False,
57
+ token = hf_token
58
+ )
59
+ tokenizer = AutoTokenizer.from_pretrained("GenVRadmin/AryaBhatta-GemmaOrca")
60
 
61
+ input_prompt = """
62
+ ### Instruction:
63
+ {}
64
 
65
+ ### Input:
66
+ {}
67
 
68
+ ### Response:
69
+ {}"""
70
 
71
+ input_text = input_prompt.format(
72
+ "Answer this question about India.", # instruction
73
+ "Who is the Prime Minister of India", # input
74
+ "", # output - leave this blank for generation!
75
+ )
76
 
77
+ inputs = tokenizer([input_text], return_tensors = "pt").to("cuda")
78
 
79
+ outputs = model.generate(**inputs, max_new_tokens = 300, use_cache = True)
80
+ response = tokenizer.batch_decode(outputs)[0]
81
+ ```