GenVRadmin commited on
Commit
5c70b19
1 Parent(s): b942023

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. README.md +177 -55
  2. adapter_model.safetensors +3 -0
README.md CHANGED
@@ -1,77 +1,199 @@
1
  ---
2
- license: mit
 
3
  ---
4
 
5
- This model is a part of two model series, AryaBhatta-1 and AryaBhatta-2 and is finetuned from HuggingFaceH4/zephyr-7b-gemma-v0.1 or Google/gemma and is finetuned on 9 Indian languages (Hindi, Tamil, Punjabi, Bengali, Gujarati, Oriya, Telugu, Kannada, Malayalam) plus English.
6
- To improve the resoning and maths skills, we first SFT tune the gemma on Microsoft's Orca datasets.
7
 
8
- There are two models. One finetuned on Google's Gemma and one fine-tuned on Zephyr's Gemma base. Repo for other one (Zephyr one): GenVRadmin/AryaBhatta-GemmaOrca-2-Merged
9
 
10
- We utilize Orca maths Hindi dataset: GenVRadmin/Aryabhatta-Orca-Maths-Hindi \
11
- And original Orca maths dataset: microsoft/orca-math-word-problems-200k
12
 
13
- This pushes the MATHS score from 24.3 in Gemma-7B to 25.5 in Zephyr-Gemma and 31.6 in GemmaOrca.
14
 
15
- The model is then finetuned on GenVR's Samvaad datasets (GenVRadmin/Samvaad-Indic-Positive and GenVRadmin/Samvaad-Tamil-Mixtral and a subset of GenVRadmin/Samvaad-Mixed-Language-3).
16
 
17
- This is then finetuned on various open sourced datasets like:
18
 
19
- Telugu-LLM-Labs/yahma_alpaca_cleaned_telugu_filtered_and_romanized \
20
- Telugu-LLM-Labs/teknium_GPTeacher_general_instruct_telugu_filtered_and_romanized \
21
- abhinand/tamil-alpaca \
22
- Tensoic/airoboros-3.2_kn \
23
- Tensoic/gpt-teacher_kn \
24
- Tensoic/Alpaca-Gujarati \
25
- HydraIndicLM/bengali_alpaca_dolly_67k \
26
- Open-Orca/OpenOrca \
27
- pankajmathur/alpaca_orca \
28
- OdiaGenAI/Odia_Alpaca_instructions_52k \
29
- OdiaGenAI/gpt-teacher-roleplay-odia-3k \
30
- GenVRadmin/Samvaad-Punjabi-Mini \
31
- pankajmathur/WizardLM_Orca
32
 
33
- The model achieves following scores on benchmarks:
34
 
35
- Model AGIEval GPT4All TruthfulQA BigBench Average ⬇️ \
36
- AryaBhatta-GemmaOrca 35.9 72.26 53.85 40.35 50.59 \
37
- zephyr-7b-beta 37.52 71.77 55.26 39.77 51.08 \
38
- zephyr-7b-gemma-v0.1 34.22 66.37 52.19 37.10 47.47 \
39
- mlabonne/Gemmalpaca-7B 21.6 40.87 44.85 30.49 34.45 \
40
- google/gemma-7b-it 21.33 40.84 41.70 30.25 33.53
 
41
 
 
42
 
 
43
 
44
- How to use:-
45
- ```
46
- from peft import AutoPeftModelForCausalLM
47
- from transformers import AutoTokenizer
48
 
49
- model = AutoPeftModelForCausalLM.from_pretrained(
50
- "GenVRadmin/AryaBhatta-GemmaOrca",
51
- load_in_4bit = False,
52
- token = hf_token
53
- )
54
- tokenizer = AutoTokenizer.from_pretrained("GenVRadmin/AryaBhatta-GemmaOrca")
55
 
56
- input_prompt = """
57
- ### Instruction:
58
- {}
59
 
60
- ### Input:
61
- {}
62
 
63
- ### Response:
64
- {}"""
65
 
66
- input_text = input_prompt.format(
67
- "Answer this question about India.", # instruction
68
- "Who is the Prime Minister of India", # input
69
- "", # output - leave this blank for generation!
70
- )
71
 
72
- inputs = tokenizer([input_text], return_tensors = "pt").to("cuda")
73
 
74
- outputs = model.generate(**inputs, max_new_tokens = 300, use_cache = True)
75
- response = tokenizer.batch_decode(outputs)[0]
76
- ```
77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: transformers
3
+ tags: []
4
  ---
5
 
6
+ # Model Card for Model ID
 
7
 
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
10
 
 
11
 
12
+ ## Model Details
13
 
14
+ ### Model Description
15
 
16
+ <!-- Provide a longer summary of what this model is. -->
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
+ ### Model Sources [optional]
29
 
30
+ <!-- Provide the basic links for the model. -->
31
 
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
 
35
 
36
+ ## Uses
 
 
 
 
 
37
 
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
39
 
40
+ ### Direct Use
 
41
 
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
43
 
44
+ [More Information Needed]
 
 
 
 
45
 
46
+ ### Downstream Use [optional]
47
 
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
49
 
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9276502bf65093495af33114cec53082453f4b7456e88dcd10fea76333b8513d
3
+ size 800116456