--- license: mit --- This model is finetuned from HuggingFaceH4/zephyr-7b-gemma-v0.1 and is finetuned on 8 Indian languages. To improve the resoning and maths skills, we first SFT tune the gemma on Microsoft's Orca datasets. We utilize Orca maths Hindi dataset: GenVRadmin/Aryabhatta-Orca-Maths-Hindi And original Orca maths dataset: microsoft/orca-math-word-problems-200k This pushes the MATHS score from 24.3 in Gemma-7B to 25.5 in Zephyr-Gemma and 31.6 in GemmaOrca. The model is then finetuned on GenVR's Samvaad datasets (GenVRadmin/Samvaad-Indic-Positive and GenVRadmin/Samvaad-Tamil-Mixtral and a subset of GenVRadmin/Samvaad-Mixed-Language-3). This is then finetuned on various open sourced datasets like: Telugu-LLM-Labs/yahma_alpaca_cleaned_telugu_filtered_and_romanized, Telugu-LLM-Labs/teknium_GPTeacher_general_instruct_telugu_filtered_and_romanized abhinand/tamil-alpaca Tensoic/airoboros-3.2_kn, Tensoic/gpt-teacher_kn Tensoic/Alpaca-Gujarati Open-Orca/OpenOrca pankajmathur/alpaca_orca The model achieves following scores on benchmarks: Model AGIEval GPT4All TruthfulQA BigBench Average ⬇️ AryaBhatta-GemmaOrca 39.9 74.26 58.85 43.35 54.09 zephyr-7b-beta 37.52 71.77 55.26 39.77 51.08 zephyr-7b-gemma-v0.1 34.22 66.37 52.19 37.10 47.47 mlabonne/Gemmalpaca-7B 21.6 40.87 44.85 30.49 34.45 google/gemma-7b-it 21.33 40.84 41.70 30.25 33.53