File size: 41,273 Bytes
0eb3766 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 |
import json
import os
import tqdm
from typing import List, Dict, Any
import nltk
import re
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
from dataclasses import dataclass
from abc import ABC, abstractmethod
from transformers import pipeline
from rouge_score import rouge_scorer
from codebleu import calc_codebleu
import math
import numpy as np
import jieba
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel
class LLMModel:
def __init__(self, model_name: str):
self.model_name = model_name
self.is_time_series = False
self.timesfm_model = None # timesfm时序模型
if "timesfm" in model_name.lower():
import timesfm
self.is_time_series = True
self.tfm = timesfm.TimesFm(
hparams=timesfm.TimesFmHparams(
backend="gpu",
per_core_batch_size=32,
),
checkpoint=timesfm.TimesFmCheckpoint(
huggingface_repo_id=model_name),
)
elif "qwen" in model_name.lower() or "gemma" in model_name.lower() or "internlm" in model_name.lower() or "vicuna" in model_name.lower() or "gpt" in model_name.lower():
self.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
self.model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, device_map="auto")
self.copied_model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, device_map="auto")
self.model = self.model.eval()
elif "chatglm" in model_name.lower():
self.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
self.model = AutoModel.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.float16, device_map="auto")
self.model = self.model.eval()
else:
self.pipeline = pipeline("text-generation", model=model_name, device_map="auto", trust_remote_code=True)
def generate(self, prompt: str, max_new_tokens=256) -> str:
if self.is_time_series:
raise NotImplementedError("This model is a time-series model. Please call generate_for_timeseries() instead of generate().")
if "vicuna" in self.model_name.lower() or "gpt" in self.model_name.lower():
inputs = self.tokenizer(prompt, return_tensors="pt")
generate_ids = self.model.generate(inputs.input_ids.cuda(), max_new_tokens=max_new_tokens, pad_token_id=self.tokenizer.eos_token_id)
output = self.tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
return output
elif "llama" in self.model_name.lower():
self.messages = [
{"role": "system", "content": "You are a helpful and useful AI assistant."},
{"role": "user", "content":prompt }
]
prompt = self.pipeline.tokenizer.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
terminators = [
self.pipeline.tokenizer.eos_token_id,
self.pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
output = self.pipeline(prompt, max_new_tokens=max_new_tokens, num_return_sequences=1,
pad_token_id = self.pipeline.tokenizer.eos_token_id,
return_full_text=False, eos_token_id=terminators)
return output[0]["generated_text"]
elif "qwen" in self.model_name.lower():
self.messages = [
{"role": "system", "content": "You are a helpful and useful AI assistant."},
{"role": "user", "content": prompt}
]
prompt = self.tokenizer.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
model_inputs = self.tokenizer([prompt], return_tensors="pt").to("cuda")
generated_ids = self.model.generate(model_inputs.input_ids, max_new_tokens=max_new_tokens, pad_token_id=self.tokenizer.eos_token_id)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
elif "gemma" in self.model_name.lower():
self.messages = [
{"role": "user", "content": prompt}
]
prompt = self.tokenizer.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
model_inputs = self.tokenizer([prompt], return_tensors="pt").to("cuda")
generated_ids = self.model.generate(model_inputs.input_ids, max_new_tokens=max_new_tokens, pad_token_id=self.tokenizer.eos_token_id)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
elif "chatglm" in self.model_name.lower() or "internlm" in self.model_name.lower():
response, _ = self.model.chat(self.tokenizer, prompt, history=[])
return response
def generate_for_timeseries(
self,
series_data: List[float],
horizon: int = 1,
freq: int = 0
) -> List[float]:
if self.is_time_series and self.tfm is not None:
forecast_input = [series_data]
frequency_input = [freq]
point_forecast, _ = self.tfm.forecast(
forecast_input,
freq=frequency_input
)
forecast_result = point_forecast[0]
if horizon < len(forecast_result):
forecast_result = forecast_result[:horizon]
return forecast_result.tolist()
else:
prompt = (
"You are a time-series forecasting assistant.\n"
f"The historical data points are: {series_data}.\n"
f"Please predict the next {horizon} future data point(s) directly without other words based on the historical trend.\n\n"
"Format your answer as a list of floats, e.g. `[3.1415, 2.7182]`.\n"
"Answer:"
)
raw_response = self.generate(prompt, max_new_tokens=64)
import re
pattern = r"\[([\d\.\,\s\-eE]+)\]"
match = re.search(pattern, raw_response)
if not match:
print("Warning: LLM output not in expected format, fallback to 0.0")
return [0.0] * horizon
numbers_str = match.group(1)
raw_nums = re.split(r"[\s,]+", numbers_str.strip())
parsed_vals = []
for val in raw_nums:
try:
parsed_vals.append(float(val))
except ValueError:
continue
# 如果预测数量不够 horizon,就做填充或截断
if len(parsed_vals) < horizon:
# 填充
while len(parsed_vals) < horizon:
parsed_vals.append(parsed_vals[-1] if parsed_vals else 0.0)
elif len(parsed_vals) > horizon:
parsed_vals = parsed_vals[:horizon]
return parsed_vals
@dataclass
class Instance:
input: Dict[str, Any]
output: Dict[str, Any]
id: str
class BaseTask(ABC):
def __init__(self, task_data: Dict[str, Any], model: LLMModel):
self.task_data = task_data
self.model = model
self.data = self._parse_data(task_data)
@abstractmethod
def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]:
pass
@abstractmethod
def run_inference(self):
pass
class MultipleChoiceQA(BaseTask):
def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]:
return [Instance(input=d["input"], output={}, id=d["id"])
for d in task_data["data"]]
def run_inference(self):
self.predictions = []
for inst in tqdm.tqdm(self.data):
question = inst.input["question"]
options = inst.input["options"]
options_chars = [chr(65 + i) for i in range(len(options))]
prompt = f"Question: {question}\nOptions:\n"
for i, opt in enumerate(options):
prompt += options_chars[i] + ". " + opt + "\n"
if self.task_data["task"] == "Causal Reasoning":
prompt += f"{question}\nPlease substitute yourself into the above scenario and select the most likely cause and effect outcome. "
prompt += r'Please answer the question and output it strictly in the following format: "The final answer is $\boxed{your choice}$" at the end of the sentence.'
response = self.model.generate(prompt, max_new_tokens=256)
pred = None
if "answer" not in response:
pred = "A"
else:
pattern = "answer"
response = re.split(pattern, response, flags=re.IGNORECASE)[-1]
for opt in options_chars:
if opt in response:
pred = opt
break
if pred is None:
pred = "A"
self.predictions.append(pred)
class OpenQA(BaseTask):
def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]:
return [Instance(input=d["input"], output={}, id=d["id"])
for d in task_data["data"]]
def run_inference(self):
self.predictions = []
for inst in tqdm.tqdm(self.data):
prompt = ""
question = inst.input["question"]
if "context" in inst.input.keys():
context = inst.input["context"]
prompt += f"Given the context: {context}\n"
if self.task_data["task"] == "Temporal Reasoning":
prompt += f"{question}\nAccroding to the provided context, how long does it take for the event? Please give a direct answer without other words"
elif self.task_data["task"] == "Medical Question Answering":
prompt += f"Please answer the question in a short pargraph: {question}"
elif self.task_data["task"] == "Multilingual Question Answering":
prompt += f"Please directly answer the question using the language in the question: {question}"
elif self.task_data["task"] == "Table Question Answering":
table = inst.input["table"]
prompt += f"Please read the content of the table below carefully and then directly answer the question without other words:\n{table}\n\nQuestion: {question}\nAnswer:"
else:
prompt += f"Please directly answer the question in a short sentence: {question}"
if self.task_data["task"] == "Document-Level Causal":
prompt += f"\nIf the context does not contain an answer to the question, simply output \"None of the above\"."
response = self.model.generate(prompt, max_new_tokens=256)
pred = response.strip()
self.predictions.append(pred)
class SummarizationTask(BaseTask):
def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]:
instances = []
for d in task_data["data"]:
if "document_list" in d:
instance = Instance(
input={"document_list": d["document_list"]},
output={},
id=d["id"]
)
elif d.get("input") and "highlights" in d.get("output", {}):
instance = Instance(
input={"document": d["document"]},
output={},
id=d["id"]
)
else:
instance = Instance(
input={"document": d["document"]},
output={},
id=d["id"]
)
instances.append(instance)
return instances
def run_inference(self):
self.predictions = []
for inst in tqdm.tqdm(self.data):
if "document_list" in inst.input:
doc_list = inst.input["document_list"]
combined_docs = "\n".join(doc_list)
prompt = (
"You are a multi-document summarization assistant.\n"
"Please read the following documents, and then summarize them in a concise paragraph:\n\n"
f"{combined_docs}\n\n"
"Summary:"
)
else:
doc = inst.input["document"]
prompt = (
"Please summarize the following document in a short sentence\n"
f"{doc}\n"
"Summary:"
)
pred = self.model.generate(prompt, max_new_tokens=256)
if "Summary:" in pred:
pred = pred.split("Summary:")[-1].strip()
else:
pred = pred.strip()
self.predictions.append(pred)
class TranslationTask(BaseTask):
def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]:
return [Instance(input={
"source_lang": d["in"],
"target_lang": d["out"],
"text": d["input"]
},
output={},
id=d["id"])
for d in task_data["data"]]
def run_inference(self):
self.predictions = []
for inst in tqdm.tqdm(self.data):
source_lang = inst.input["source_lang"]
target_lang = inst.input["target_lang"]
text = inst.input["text"]
prompt = (f"Please directly Translate the following text from {source_lang} to {target_lang}.\n"
f"Text: {text}\n"
f"Translation:")
pred = self.model.generate(prompt, max_new_tokens=256)
if "Translation:" in pred:
pred = pred.split("Translation:")[-1].strip()
else:
pred = pred.strip()
self.predictions.append(pred)
class StoryGenerationTask(BaseTask):
def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]:
instances = []
for d in task_data["data"]:
instances.append(
Instance(
input=d["input"],
output={},
id=d["id"]
)
)
return instances
def run_inference(self):
self.predictions = []
for inst in tqdm.tqdm(self.data):
prompt_text = inst.input["prompt"]
prompt = f"Please write a story based on the following prompt:\n{prompt_text}\nStory:"
pred = self.model.generate(prompt, max_new_tokens=512)
if "Story:" in pred:
pred = pred.split("Story:")[-1].strip()
self.predictions.append(pred)
class DialogueGenerationTask(BaseTask):
def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]:
instances = []
for d in task_data["data"]:
dialog_list = d.get("dialog", [])
if not dialog_list:
continue
instances.append(
Instance(
input={"dialog": dialog_list},
output={},
id=d["id"]
)
)
return instances
def run_inference(self):
self.predictions = []
for inst in tqdm.tqdm(self.data):
dialog_context = inst.input["dialog"]
prompt = "Below is a multi-turn conversation. Please continue the dialogue for the last turn.\n\n"
for turn_idx, turn in enumerate(dialog_context):
prompt += f"Turn {turn_idx + 1}: {turn}\n"
prompt += "\nNow please respond in one short answer:\n"
pred = self.model.generate(prompt, max_new_tokens=128).strip()
self.predictions.append(pred)
class CodeGenerationTask(BaseTask):
def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]:
instances = []
for d in task_data["data"]:
instance_id = d["id"]
language = d["language"]
goal = d["goal"]
context = d.get("context", [])
instances.append(
Instance(
input={
"language": language,
"goal": goal,
"context": context
},
output={},
id=instance_id
)
)
return instances
def run_inference(self):
self.predictions = []
self.languages = []
for inst in tqdm.tqdm(self.data):
language = inst.input["language"]
goal = inst.input["goal"]
context = inst.input["context"]
prompt = f"You are an AI developer. Your goal is: {goal}\n"
prompt += f"Please write {language} code that solves the described task.\n\n"
for c_item in context:
c_type = c_item["type"]
c_content = c_item["content"]
if c_type == "description":
prompt += f"Description:\n{c_content}\n\n"
elif c_type == "example":
prompt += "Examples:\n"
for ex in c_content:
prompt += f"- Input: {ex['input']}, Expected Output: {ex['output']}\n"
prompt += "\n"
else:
prompt += f"{c_type.capitalize()}:\n{c_content}\n\n"
prompt += (
"Now, please output ONLY the final code solution (without additional explanations, comments or text)."
"\nCode:\n"
)
pred_code = self.model.generate(prompt, max_new_tokens=256).strip()
if "Code:" in pred_code:
pred_code = pred_code.split("Code:", 1)[-1].strip()
self.predictions.append(pred_code)
self.languages.append(language)
class CodeRepairTask(BaseTask):
def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]:
instances = []
for d in task_data["data"]:
instance_id = d["id"]
input_part = d["input"]
prompt = input_part["prompt"]
source_code = input_part["sourceCode"]
instances.append(
Instance(
input={
"prompt": prompt,
"sourceCode": source_code
},
output={},
id=instance_id
)
)
return instances
def run_inference(self):
self.predictions = []
for inst in tqdm.tqdm(self.data):
prompt = inst.input["prompt"]
source_code = inst.input["sourceCode"]
final_prompt = (
f"{prompt}\n"
f"{source_code}\n\n"
"Now, please output ONLY the final code solution (without additional explanations, comments or text)."
"Refined Code:"
)
pred_code = self.model.generate(final_prompt, max_new_tokens=256).strip()
if "Refined Code:" in pred_code:
pred_code = pred_code.split("Refined Code:", 1)[-1].strip()
self.predictions.append(pred_code)
class CodeDefectDetectionTask(BaseTask):
def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]:
instances = []
for d in task_data["data"]:
instances.append(
Instance(
input={"func": d["func"]},
output={},
id=d["id"]
)
)
return instances
def run_inference(self):
self.predictions = []
for inst in tqdm.tqdm(self.data):
code_snippet = inst.input["func"]
prompt = (
"You are a code reviewer. Below is a piece of code or function:\n"
f"{code_snippet}\n\n"
"Please review carefully and determine if it contains a grammatical or logical defect. "
"For example, the code below has defect:\n"
"static void show_packets(AVFormatContext *format_ctx)\n\n{\n\n AVPacket packet;\n\n\n\n av_init_packet(&packet);\n\n probe_array_header(\"packets\", 0);\n\n while (!av_read_frame(format_ctx, &packet))\n\n show_packet(format_ctx, &packet);\n\n probe_array_footer(\"packets\", 0);\n\n}\n"
"For another example, the code below has no defect:\n"
"static void visitor_output_setup_internal(TestOutputVisitorData *output_data,\n\n bool is_human)\n\n{\n\n output_data->human = is_human;\n\n output_data->sov = string_output_visitor_new(is_human);\n\n g_assert(output_data->sov);\n\n output_data->ov = string_output_get_visitor(output_data->sov);\n\n g_assert(output_data->ov);\n\n}\n"
"Output only 'No defect' if it does NOT contain a grammatical or logical defect, "
"or ouput only 'Defect' if it DOES contain a defect.\n"
"Answer:"
)
response = self.model.generate(prompt, max_new_tokens=16).strip()
if "no defect" in response.lower():
pred = "0"
else:
pred = "1"
self.predictions.append(pred)
class TextToSQLTask(BaseTask):
def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]:
instances = []
for d in task_data["data"]:
instances.append(
Instance(
input={
"context": d["input"]["context"],
"question": d["input"]["question"],
},
output={},
id=d["id"]
)
)
return instances
def run_inference(self):
self.predictions = []
for inst in tqdm.tqdm(self.data):
schema_context = inst.input["context"]
question = inst.input["question"]
prompt = (
"Below is a database schema:\n"
f"{schema_context}\n"
"Given the schema, please write a valid SQL query that answers the following question without other words.\n"
f"Question: {question}\n"
"SQL:"
)
response = self.model.generate(prompt, max_new_tokens=256)
if "SQL:" in response:
pred_sql = response.split("SQL:", 1)[-1].strip()
else:
pred_sql = response.strip()
self.predictions.append(pred_sql)
class CodeExplanationTask(BaseTask):
def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]:
instances = []
for d in task_data["data"]:
code_snippet = d["code"]
instance_id = d["id"]
instances.append(
Instance(
input={"code": code_snippet},
output={},
id=instance_id
)
)
return instances
def run_inference(self):
self.predictions = []
for inst in tqdm.tqdm(self.data):
code_snippet = inst.input["code"]
prompt = (
"You are a code explainer. "
"Please read the following code snippet and provide a concise, clear explanation in natural language:. For example:\n"
"Code:\nboolean equalsResidueRing ( Object obj ) { if ( !( obj instanceof ResidueRing ) ) { return false ; } ResidueRing < C > otherRing = null ; try { otherRing = ( ResidueRing < C > ) obj ; } catch ( ClassCastException e ) { return false ; } if ( otherRing == null ) { return false ; } if ( ! ring . equals ( otherRing . ring ) ) { return false ; } return modul . equals ( otherRing . modul ) ; }"
"Explanation: compares this ResidueRing with another object.\n\n"
"Now please explain the code below without other words:\n"
f"{code_snippet}\n"
"Explanation:"
)
pred_explanation = self.model.generate(prompt, max_new_tokens=256).strip()
self.predictions.append(pred_explanation)
class MathematicalProofGenerationTask(BaseTask):
def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]:
instances = []
for d in task_data["data"]:
statement = d["statement"]
instances.append(
Instance(
input={
"statement": statement
},
output={},
id=d["id"]
)
)
return instances
def run_inference(self):
self.predictions = []
for inst in tqdm.tqdm(self.data):
statement = inst.input["statement"]
prompt = (
"You are a mathematical assistant. "
"Please provide a clear, step-by-step proof for the following statement:\n"
f"Statement: {statement}\n\n"
"Ensure you include the final conclusion as well. Proof:"
)
pred_proof = self.model.generate(prompt, max_new_tokens=512).strip()
self.predictions.append(pred_proof)
class MathematicalWordProblemSolvingTask(BaseTask):
def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]:
instances = []
for d in task_data["data"]:
problem_text = d["problem"]["text"]
constraints = d["problem"].get("constraints", [])
instances.append(
Instance(
input={
"problem_text": problem_text,
"constraints": constraints
},
output={},
id=d["id"]
)
)
return instances
def run_inference(self):
self.predictions_steps = []
self.predictions_final = []
for inst in tqdm.tqdm(self.data):
problem_text = inst.input["problem_text"]
constraints = inst.input["constraints"]
constraints_str = ""
if constraints:
constraints_str = "\nConstraints:\n" + "\n".join(constraints)
prompt = (
"You are a math problem solver. Please solve the following word problem step by step. "
"Finally, provide the final numeric or short answer in a separate line labeled as 'Final Answer:'.\n\n"
f"Problem:\n{problem_text}{constraints_str}\n\n"
"Solution (step-by-step) + Final Answer:\n"
)
response = self.model.generate(prompt, max_new_tokens=512).strip()
steps_part, final_part = response, ""
if "Final Answer:" in response:
parts = response.split("Final Answer:", 1)
steps_part = parts[0].strip()
final_part = parts[1].strip()
self.predictions_steps.append(steps_part)
self.predictions_final.append(final_part)
class ParaphraseGenerationTask(BaseTask):
def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]:
instances = []
for d in task_data["data"]:
instances.append(
Instance(
input={"originalSentence": d["input"]["originalSentence"]},
output={},
id=d["id"]
)
)
return instances
def run_inference(self):
self.predictions = []
for inst in tqdm.tqdm(self.data):
original_sentence = inst.input["originalSentence"]
prompt = (
"Please rewrite the following sentence in a different way but keep the same meaning:\n"
f"{original_sentence}\n"
"Paraphrase:"
)
pred = self.model.generate(prompt, max_new_tokens=128)
if "Paraphrase:" in pred:
pred = pred.split("Paraphrase:")[-1].strip()
self.predictions.append(pred.strip())
class GrammarCorrectionTask(BaseTask):
def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]:
return [
Instance(
input=d["input"],
output={},
id=d["id"]
)
for d in task_data["data"]
]
def run_inference(self):
self.predictions = []
for inst in tqdm.tqdm(self.data):
error_type = inst.input["Error Type"]
ungrammatical_sentence = inst.input["Ungrammatical Statement"]
prompt = (
f"You are a grammar correction assistant.\n"
f"There is a sentence with the following error type: {error_type}.\n"
f"Please rewrite the sentence in correct standard English without any other word.\n\n"
f"Ungrammatical Sentence: {ungrammatical_sentence}\n\n"
f"Rewritten Sentence:"
)
corrected = self.model.generate(prompt, max_new_tokens=128).strip()
if "Rewritten Sentence:" in corrected:
corrected = corrected.split("Rewritten Sentence:")[-1].strip()
self.predictions.append(corrected)
class TextStyleTransferTask(BaseTask):
def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]:
instances = []
for d in task_data["data"]:
instances.append(
Instance(
input={
"text": d["input"]["text"],
"style": d["input"]["style"]
},
output={},
id=d["id"]
)
)
return instances
def run_inference(self):
self.predictions = []
for inst in tqdm.tqdm(self.data):
text = inst.input["text"]
style = inst.input["style"]
prompt = (
"You are a style transfer assistant.\n"
"Below is a piece of text and a target style.\n"
f"Text: {text}\n"
f"Style: {style}\n\n"
"Please rewrite the above text to match the target style more accurately, "
"while keeping the original meaning intact.\n"
"Answer:"
)
pred = self.model.generate(prompt, max_new_tokens=256).strip()
if "Answer:" in pred:
pred = pred.split("Answer:")[-1].strip()
self.predictions.append(pred)
class TableToTextGenerationTask(BaseTask):
def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]:
instances = []
for d in task_data["data"]:
instance_id = d["id"]
table_data = d["input"]["table"]
instances.append(
Instance(
input={"table": table_data},
output={},
id=instance_id
)
)
return instances
def run_inference(self):
self.predictions = []
for inst in tqdm.tqdm(self.data):
table_data = inst.input["table"]
prompt = "Below is a table. Please generate a coherent description that summarizes the table's content.\n\n"
for table_idx, table_item in enumerate(table_data):
header = table_item["header"]
rows = table_item["rows"]
prompt += f"Table {table_idx+1}:\nHeader: {header}\nRows:\n"
for r_idx, row in enumerate(rows):
prompt += f"{r_idx+1}. {row}\n"
prompt += "\n"
prompt += "Now write a concise text describing the above table:\n"
pred_text = self.model.generate(prompt, max_new_tokens=512)
pred_text = pred_text.strip()
self.predictions.append(pred_text)
class TimeSeriesForecastingTask(BaseTask):
def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]:
instances = []
for d in task_data["data"]:
time_series = d["input"]["data"]
instances.append(
Instance(
input={"time_series": time_series},
output={},
id=d["id"]
)
)
return instances
def run_inference(self):
self.predictions = []
for inst in tqdm.tqdm(self.data):
series_data = inst.input["time_series"]
pred_values = self.model.generate_for_timeseries(series_data, horizon=1, freq=0)
predicted = pred_values[0] if pred_values else 0.0
self.predictions.append(predicted)
class ClassificationTask(BaseTask):
def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]:
return [Instance(input=d["input"], output={}, id=d["id"])
for d in task_data["data"]]
def run_inference(self):
self.predictions = []
for inst in tqdm.tqdm(self.data):
if 'stance_detection' in self.task_data['task']:
tweets = inst.input["tweets"]
target = inst.input["target"]
prompt = inst.input["prompt"].replace("<<<target>>>", target).replace("<<<tweets>>>", tweets)
elif 'aspect_sentiment_classification' in self.task_data['task']:
raw_text = inst.input["raw_text"]
target = inst.input["target"]
prompt = inst.input["prompt"].replace("<<<raw_text>>>", raw_text).replace("<<<target>>>", target) + 'Please direct return the category name without any other words.'
elif 'target_oriented_opinion_words_extraction' in self.task_data['task']:
raw_text = inst.input["raw_text"]
aspect = inst.input["aspect"]
prompt = inst.input["prompt"].replace("<<<raw_text>>>", raw_text).replace("<<<aspect>>>", aspect) + 'Please direct return the opinion word without any other words.'
else:
raw_text = inst.input["raw_text"]
prompt = inst.input["prompt"].replace("<<<raw_text>>>", raw_text) + 'Please return the desired result directly, without any other explanation.'
response = self.model.generate(prompt, max_new_tokens=64)
self.predictions.append(response.lower())
class MultiLabelClassificationTask(BaseTask):
def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]:
return [Instance(input=d["input"], output={}, id=d["id"])
for d in task_data["data"]]
def run_inference(self):
self.predictions = []
for inst in tqdm.tqdm(self.data):
raw_text = inst.input["raw_text"]
prompt = inst.input["prompt"].replace("<<<raw_text>>>", raw_text)
prompt = prompt + " Please return the desired result directly, without any other explanation." + " Split the result by commas instead of \\n."
response = self.model.generate(prompt, max_new_tokens=64)
self.predictions.append('<p>'.join(response.lower().split(', ')))
class ChoiceTask(BaseTask):
def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]:
return [Instance(input=d["input"], output={}, id=d["id"])
for d in task_data["data"]]
def run_inference(self):
self.predictions = []
for inst in tqdm.tqdm(self.data):
raw_text = inst.input["raw_text"]
prompt = inst.input["prompt"].replace("<<<raw_text>>>", raw_text) + 'Please return the desired result directly, without any other explanation.'
response = self.model.generate(prompt, max_new_tokens=64)
if len(response.strip()) > 1:
if "A" in response.strip():
response = "A"
elif "B" in response.strip():
response = "B"
elif "C" in response.strip():
response = "C"
elif "D" in response.strip():
response = "D"
self.predictions.append(response.lower())
class NERTask(BaseTask):
def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]:
return [Instance(input=d["input"], output={}, id=d["id"])
for d in task_data["data"]]
def run_inference(self):
self.predictions = []
for inst in tqdm.tqdm(self.data):
text = inst.input["raw_text"]
prompt = inst.input["prompt"].replace("<<<raw_text>>>", text)
response = self.model.generate(prompt, max_new_tokens=128)
self.predictions.append('<p>'.join(response.lower().split(', ')))
def save_predictions(task_obj: BaseTask, task_directory: str):
save_path = os.path.join(task_directory, "prediction.json")
records = []
if isinstance(task_obj, MathematicalWordProblemSolvingTask):
for idx, inst in enumerate(task_obj.data):
records.append({
"id": inst.id,
"prediction_steps": task_obj.predictions_steps[idx],
"prediction_final": task_obj.predictions_final[idx]
})
elif isinstance(task_obj, TimeSeriesForecastingTask):
for idx, inst in enumerate(task_obj.data):
records.append({
"id": inst.id,
"prediction": float(task_obj.predictions[idx])
})
else:
for idx, inst in enumerate(task_obj.data):
pred_val = task_obj.predictions[idx]
if isinstance(pred_val, (np.floating, np.integer)):
pred_val = float(pred_val)
records.append({"id": inst.id, "prediction": pred_val})
with open(save_path, "w", encoding="utf-8") as fp:
json.dump(records, fp, ensure_ascii=False, indent=2)
TASK_MAPPING = {
"MultipleChoiceQA": MultipleChoiceQA,
"OpenQA": OpenQA,
"Summarization": SummarizationTask,
"Story Generation": StoryGenerationTask,
"Translation": TranslationTask,
"Dialogue": DialogueGenerationTask,
"Code Generation": CodeGenerationTask,
"Code Defect Detection": CodeDefectDetectionTask,
"Code Repair": CodeRepairTask,
"Code Explanation": CodeExplanationTask,
"Proof": MathematicalProofGenerationTask,
"Mathematical Word Problem Solving": MathematicalWordProblemSolvingTask,
"Text to SQL": TextToSQLTask,
"Paraphrase Generation": ParaphraseGenerationTask,
"Grammar Correction": GrammarCorrectionTask,
"Table-to-Text Generation": TableToTextGenerationTask,
"Time Series": TimeSeriesForecastingTask,
"Text Style Transfer": TextStyleTransferTask,
"classification": ClassificationTask,
"multi label classification": MultiLabelClassificationTask,
"ner": NERTask,
"extraction": MultiLabelClassificationTask,
"relation extraction": MultiLabelClassificationTask,
"event detection": MultiLabelClassificationTask,
"parsing": MultiLabelClassificationTask,
"multiple choice": ChoiceTask,
}
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="NLP Predictor")
parser.add_argument("--dataset_dir", required=True)
parser.add_argument("--model_name", required=True)
args = parser.parse_args()
data_root = os.path.abspath(args.dataset_dir)
model = LLMModel(args.model_name)
task_dirs = sorted([d for d in os.listdir(data_root) if os.path.isdir(os.path.join(data_root, d))])
for idx, task_folder in enumerate(task_dirs, start=1):
folder_path = os.path.join(data_root, task_folder)
annotation_path = os.path.join(folder_path, "annotation.json")
with open(annotation_path, "r", encoding="utf-8") as f:
task_data = json.load(f)
task_type = task_data.get("type")
task_name = task_data.get("task", task_folder)
print(f"\nTask {idx}/{len(task_dirs)}: {task_name} (Type = {task_type})")
task_class = TASK_MAPPING.get(task_type, OpenQA)
task = task_class(task_data, model)
task.run_inference()
save_predictions(task, folder_path)
|