File size: 15,717 Bytes
0eb3766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import json
import os
import re
import math
import numpy as np
import pandas as pd
from typing import List, Dict, Any, Optional
import nltk
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
from rouge_score import rouge_scorer
from codebleu import calc_codebleu
from utils.data_types import TaskResult, TaskType


class NLPProcessor:
    def __init__(self, modality, dataset_dir: str, pred_json_file: str = "prediction.json"):
        self.modality = modality
        self.dataset_dir = dataset_dir + '/nlp'
        self.pred_json_file = pred_json_file
    
    def process(self) -> List[TaskResult]:
        results = []
        
        task_dirs = [d for d in os.listdir(self.dataset_dir) if os.path.isdir(os.path.join(self.dataset_dir, d))]
        total_tasks = len(task_dirs)
        processed_tasks = 0
        
        for task_folder in task_dirs:
            folder_path = os.path.join(self.dataset_dir, task_folder)
            annotation_path = os.path.join(folder_path, "annotation.json")
            prediction_path = os.path.join(folder_path, self.pred_json_file)
            
            if not os.path.exists(annotation_path):
                print(f"Skip {task_folder}: annotation.json no exists")
                continue
            
            if not os.path.exists(prediction_path):
                print(f"Skip {task_folder}: {self.pred_json_file} no exists.")
                continue
            
            try:
                with open(annotation_path, "r", encoding="utf-8") as f:
                    task_data = json.load(f)
                
                with open(prediction_path, "r", encoding="utf-8") as f:
                    predictions_data = json.load(f)
                
                task_result = self._evaluate_task(task_data, predictions_data)
                if task_result:
                    results.append(task_result)
                    processed_tasks += 1
                    print(f"Task: {task_folder} (Socre: {task_result.score:.4f})")
                else:
                    print(f"Skip {task_folder}.")
                    
            except Exception as e:
                print(f"Skip {task_folder}: Error - {e}")
                continue
        
        return results
    
    def _evaluate_task(self, task_data: Dict[str, Any], predictions_data: List[Dict]) -> Optional[TaskResult]:
        task_type = task_data.get("type", "")
        task_name = task_data.get("task", "")
        
        pred_map = {pred["id"]: pred for pred in predictions_data}
        
        predictions = []
        references = []
        
        for data_item in task_data["data"]:
            item_id = data_item["id"]
            if item_id not in pred_map:
                continue
            
            pred_item = pred_map[item_id]
            
            if "prediction" in pred_item:
                pred = pred_item["prediction"]
            elif "prediction_final" in pred_item: 
                pred = pred_item["prediction_final"]
            else:
                continue
            
            ref = self._extract_reference(data_item, task_type)
            if ref is None:
                continue
                
            predictions.append(pred)
            references.append(ref)
        
        if not predictions:
            return None
        
        score, metric = self._calculate_metrics(predictions, references, task_type)
        metric = self._convert_metric(metric)
        
        return TaskResult(
            task_name=task_name,
            metric=metric,
            score=score,
            task_type=TaskType.COMPREHENSION
        )
    
    def _extract_reference(self, data_item: Dict[str, Any], task_type: str) -> Any:
        output = data_item.get("output", {})
        
        if task_type == "MultipleChoiceQA":
            return output.get("answer")
        elif task_type == "OpenQA":
            return output.get("answer")
        elif task_type == "Summarization":
            return output.get("summary") or output.get("highlights")
        elif task_type == "Translation":
            if isinstance(output, str):
                return output
            else:
                return output.get("translation")
        elif task_type == "Story Generation":
            return output.get("story")
        elif task_type == "Dialogue":
            return output.get("reference")
        elif task_type == "Code Generation":
            return output.get("response", {}).get("content")
        elif task_type == "Code Repair":
            return output.get("repairCode")
        elif task_type == "Code Defect Detection":
            return str(output.get("target"))
        elif task_type == "Text to SQL":
            return output.get("sql")
        elif task_type == "Code Explanation":
            return output.get("nl")
        elif task_type == "Proof":
            proof_data = output.get("proof", {})
            steps = proof_data.get("steps", [])
            conclusion = proof_data.get("conclusion", "")
            return "\n".join(steps) + f"\nConclusion: {conclusion}"
        elif task_type == "Mathematical Word Problem Solving":
            return output.get("solution", {}).get("final_answer")
        elif task_type == "Paraphrase Generation":
            return output.get("paraphraseSentence")
        elif task_type == "Grammar Correction":
            return output.get("Standard English")
        elif task_type == "Text Style Transfer":
            return output.get("answer")
        elif task_type == "Table-to-Text Generation":
            return output.get("response", {}).get("text")
        elif task_type == "Time Series":
            return output.get("target")
        elif task_type in ["classification", "multiple choice"]:
            return list(output.values())[0].lower() if output else ""
        elif task_type in ["multi label classification", "ner", "extraction", "relation extraction", "event detection", "parsing"]:
            value = list(output.values())[0] if output else ""
            return '<p>'.join(value.lower().split(', ')) if isinstance(value, str) else ""
        else:
            # 默认取第一个值
            return list(output.values())[0] if output else ""
    
    def _calculate_metrics(self, predictions: List, references: List, task_type: str) -> tuple:
        if task_type == "MultipleChoiceQA":
            score = self._exact_match_accuracy(predictions, references)
            return score, "accuracy"
        
        elif task_type == "OpenQA":
            f1_score = self._calculate_f1(predictions, references)
            return f1_score, "f1"
        
        elif task_type == "Summarization":
            rouge_scores = self._rouge_evaluation(predictions, references)
            return rouge_scores["rouge1"], "rouge1"
        
        elif task_type == "Translation":
            rouge_scores = self._rouge_evaluation(predictions, references)
            return rouge_scores["rouge1"], "rouge1"
        
        elif task_type in ["Story Generation", "Dialogue", "Paraphrase Generation", "Grammar Correction", "Text Style Transfer", "Table-to-Text Generation"]:
            bleu_scores = self._bleu_evaluation(predictions, references)
            return bleu_scores["bleu1"], "bleu1"
        
        elif task_type in ["Code Generation", "Code Repair"]:
            try:
                result = calc_codebleu(references, predictions, lang="python", weights=(0.25, 0.25, 0.25, 0.25), tokenizer=None)
                return result["codebleu"], "code_bleu"
            except:
                return 0.0, "code_bleu"
        
        elif task_type == "Code Defect Detection":
            score = self._exact_match_accuracy(predictions, references)
            return score, "accuracy"
        
        elif task_type == "Text to SQL":
            score = self._exact_match_accuracy(predictions, references)
            return score, "accuracy"
        
        elif task_type in ["Code Explanation", "Proof"]:
            bleu_scores = self._bleu_evaluation(predictions, references)
            return bleu_scores["bleu1"], "bleu1"
        
        elif task_type == "Mathematical Word Problem Solving":
            score = self._exact_match_accuracy(predictions, references)
            return score, "accuracy"
        
        elif task_type == "Time Series":
            mae = self._mean_absolute_error(predictions, references)
            return mae, "MAE"
        
        elif task_type in ["classification", "multiple choice"]:
            f1_score = self._calculate_micro_f1(predictions, references)
            return f1_score, "micro_f1"
        
        elif task_type in ["multi label classification", "ner", "extraction", "relation extraction", "event detection", "parsing"]:
            f1_score = self._calculate_micro_f1(predictions, references)
            return f1_score, "micro_f1"
        
        else:
            f1_score = self._calculate_f1(predictions, references)
            return f1_score, "f1"
    
    def _exact_match_accuracy(self, predictions: List[str], references: List[str]) -> float:
        correct = 0
        for pred, ref in zip(predictions, references):
            if isinstance(ref, str):
                ref = [ref]
            is_match = False
            for r in ref:
                if str(pred).strip() == str(r).strip():
                    is_match = True
                    break
            if is_match:
                correct += 1
        return correct / len(predictions) if predictions else 0.0
    
    def _calculate_f1(self, predictions: List[str], references: List[str]) -> float:
        def compute_f1(pred: str, ref: str) -> float:
            pred_tokens = str(pred).strip().split()
            ref_tokens = str(ref).strip().split()
            
            common_tokens = set(pred_tokens) & set(ref_tokens)
            num_common = len(common_tokens)
            
            if num_common == 0:
                return 0.0
            
            precision = num_common / len(pred_tokens) if pred_tokens else 0.0
            recall = num_common / len(ref_tokens) if ref_tokens else 0.0
            
            return 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0.0
        
        total_f1 = 0.0
        for pred, ref in zip(predictions, references):
            if isinstance(ref, str):
                ref = [ref]
            max_f1 = 0.0
            for r in ref:
                max_f1 = max(compute_f1(pred, r), max_f1)
            total_f1 += max_f1
        
        return total_f1 / len(predictions) if predictions else 0.0
    
    def _calculate_micro_f1(self, predictions: List[str], references: List[str]) -> float:
        total_tp = 0
        total_fp = 0
        total_fn = 0
        
        for pred, ref in zip(predictions, references):
            pred_tokens = set(str(pred).strip().split('<p>'))
            ref_tokens = set(str(ref).strip().split("<p>"))
            
            tp = len(pred_tokens & ref_tokens)
            fp = len(pred_tokens - ref_tokens)
            fn = len(ref_tokens - pred_tokens)
            
            total_tp += tp
            total_fp += fp
            total_fn += fn
        
        if total_tp == 0:
            return 0.0
        
        precision = total_tp / (total_tp + total_fp) if (total_tp + total_fp) > 0 else 0.0
        recall = total_tp / (total_tp + total_fn) if (total_tp + total_fn) > 0 else 0.0
        return 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0.0
    
    def _rouge_evaluation(self, predictions: List[str], references: List[str]) -> Dict[str, float]:
        scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
        rouge1_scores, rouge2_scores, rougel_scores = [], [], []
        
        for pred, ref in zip(predictions, references):
            if isinstance(ref, str):
                ref = [ref]
            rouge1, rouge2, rougeL = 0, 0, 0
            for r in ref:
                scores = scorer.score(str(r), str(pred))
                rouge1 = max(scores['rouge1'].fmeasure, rouge1)
                rouge2 = max(scores['rouge2'].fmeasure, rouge2)
                rougeL = max(scores['rougeL'].fmeasure, rougeL)
            rouge1_scores.append(rouge1)
            rouge2_scores.append(rouge2)
            rougel_scores.append(rougeL)
        
        return {
            'rouge1': sum(rouge1_scores) / len(rouge1_scores) if rouge1_scores else 0.0,
            'rouge2': sum(rouge2_scores) / len(rouge2_scores) if rouge2_scores else 0.0,
            'rougeL': sum(rougel_scores) / len(rougel_scores) if rougel_scores else 0.0,
        }
    
    def _bleu_evaluation(self, predictions: List[str], references: List[str]) -> Dict[str, float]:
        smoothie = SmoothingFunction().method4
        bleu1_scores, bleu2_scores, bleu3_scores, bleu4_scores = [], [], [], []
        
        for pred, ref in zip(predictions, references):
            try:
                hypothesis = nltk.word_tokenize(str(pred))
            except:
                hypothesis = str(pred).split()
                
            if isinstance(ref, str):
                ref = [ref]
                
            bleu1, bleu2, bleu3, bleu4 = 0, 0, 0, 0
            for r in ref:
                try:
                    reference = [nltk.word_tokenize(str(r))]
                except:
                    reference = [str(r).split()]
                    
                try:
                    bleu1 = max(sentence_bleu(reference, hypothesis, weights=(1, 0, 0, 0), smoothing_function=smoothie), bleu1)
                    bleu2 = max(sentence_bleu(reference, hypothesis, weights=(0.5, 0.5, 0, 0), smoothing_function=smoothie), bleu2)
                    bleu3 = max(sentence_bleu(reference, hypothesis, weights=(1/3, 1/3, 1/3, 0), smoothing_function=smoothie), bleu3)
                    bleu4 = max(sentence_bleu(reference, hypothesis, weights=(0.25, 0.25, 0.25, 0.25), smoothing_function=smoothie), bleu4)
                except:
                    continue
            
            bleu1_scores.append(bleu1)
            bleu2_scores.append(bleu2)
            bleu3_scores.append(bleu3)
            bleu4_scores.append(bleu4)
        
        return {
            'bleu1': sum(bleu1_scores) / len(bleu1_scores) if bleu1_scores else 0.0,
            'bleu2': sum(bleu2_scores) / len(bleu2_scores) if bleu2_scores else 0.0,
            'bleu3': sum(bleu3_scores) / len(bleu3_scores) if bleu3_scores else 0.0,
            'bleu4': sum(bleu4_scores) / len(bleu4_scores) if bleu4_scores else 0.0,
        }
    
    def _mean_absolute_error(self, predictions: List[float], references: List[float]) -> float:
        if not predictions:
            return 0.0
        
        error_sum = 0.0
        valid_count = 0
        
        for p, r in zip(predictions, references):
            try:
                error_sum += abs(float(p) - float(r))
                valid_count += 1
            except:
                continue
        
        return error_sum / valid_count if valid_count > 0 else 0.0
    
    def _convert_metric(self, metric: str) -> str:
        m = metric.lower()
        if m == "accuracy":
            return "ACC"
        if m == "f1":
            return "F1"
        if m == "micro_f1":
            return "Micro-F1"
        if m.startswith("rouge"):
            if "l" in m:
                return "ROUGE-L"
            else:
                return "ROUGE-1"
        if m.startswith("bleu"):
            return "BLEU-1"
        if m == "code_bleu":
            return "CodeBLEU"
        return metric.upper()