import tqdm from typing import List, Dict, Any from dataclasses import dataclass from abc import ABC, abstractmethod from PIL import Image import numpy as np import cv2 from typing import Tuple import os import json import argparse import torch from transformers import (AutoModel, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, CLIPImageProcessor, CLIPVisionModel, GenerationConfig) def exact_match_accuracy(predictions: List[str], references: List[str]) -> float: correct = 0 for pred, ref in zip(predictions, references): if isinstance(ref, str): ref = [ref] is_match_this_turn = False for r in ref: if pred.strip() == r.strip(): is_match_this_turn = True if is_match_this_turn: correct += 1 return correct / len(predictions) if predictions else 0.0 def bbox_to_corners(bbox): """将(x_min, y_min, w, h)格式转换为(x_min, y_min, x_max, y_max)格式""" x_min, y_min, w, h = bbox return (x_min, y_min, x_min + w, y_min + h) def calculate_iou(bbox1, bbox2): """计算两个边界框的交并比(IoU/Jaccard Index)""" # 转换为对角坐标格式 bbox1 = bbox_to_corners(bbox1) bbox2 = bbox_to_corners(bbox2) # 计算交集区域的坐标 x1 = max(bbox1[0], bbox2[0]) y1 = max(bbox1[1], bbox2[1]) x2 = min(bbox1[2], bbox2[2]) y2 = min(bbox1[3], bbox2[3]) # 计算交集面积 intersection_area = max(0, x2 - x1) * max(0, y2 - y1) # 计算两个边界框的面积 bbox1_area = (bbox1[2] - bbox1[0]) * (bbox1[3] - bbox1[1]) bbox2_area = (bbox2[2] - bbox2[0]) * (bbox2[3] - bbox2[1]) # 计算并集面积 union_area = bbox1_area + bbox2_area - intersection_area # 计算IoU if union_area == 0: return 0.0 return intersection_area / union_area def calculate_j_metric(pred_bboxes, gt_bboxes): """计算J指标(Jaccard Index)""" if len(pred_bboxes) != len(gt_bboxes): raise ValueError("预测边界框和真实边界框数量不一致") iou_values = [] for pred, gt in zip(pred_bboxes, gt_bboxes): iou = calculate_iou(pred, gt) iou_values.append(iou) # 返回平均Jaccard Index return sum(iou_values) / len(iou_values) if iou_values else 0.0 def calculate_f1_score(pred_bboxes, gt_bboxes, threshold=0.5): """计算F1 Score(F指标)""" if len(pred_bboxes) == 0 and len(gt_bboxes) == 0: return 1.0 # 特殊情况:没有检测也没有真实目标,视为完全正确 true_positives = 0 false_positives = 0 false_negatives = 0 # 标记已匹配的真实边界框 gt_matched = [False] * len(gt_bboxes) # 计算每对边界框的IoU iou_matrix = [] for i, pred in enumerate(pred_bboxes): row = [] for j, gt in enumerate(gt_bboxes): row.append(calculate_iou(pred, gt)) iou_matrix.append(row) # 贪心匹配:将每个预测边界框匹配到IoU最高的真实边界框 for i in range(len(pred_bboxes)): if not iou_matrix: break # 找到当前行的最大值及其索引 max_iou = max(iou_matrix[i]) if iou_matrix[i] else 0 j = iou_matrix[i].index(max_iou) if iou_matrix[i] else -1 if max_iou >= threshold: true_positives += 1 gt_matched[j] = True else: false_positives += 1 # 计算假阴性 false_negatives = sum(1 for matched in gt_matched if not matched) # 计算精确率和召回率 precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) > 0 else 0 recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) > 0 else 0 # 计算F1 Score f1 = 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0 return f1 def calculate_j_and_f_metrics(pred_bboxes, gt_bboxes, iou_threshold=0.5): """计算J指标和F指标""" # 计算J指标 j_metric = calculate_j_metric(pred_bboxes, gt_bboxes) # 计算F指标 f_metric = calculate_f1_score(pred_bboxes, gt_bboxes, threshold=iou_threshold) return { "J_metric": j_metric, "F_metric": f_metric } def read_flow(file_path: str) -> np.ndarray: if file_path.endswith('.flo'): return read_flow_flo(file_path) elif file_path.endswith(('.png', '.jpg', '.jpeg')): return read_flow_png(file_path) else: raise NotImplementedError def read_flow_flo(file_path: str) -> np.ndarray: with open(file_path, 'rb') as f: magic = np.fromfile(f, np.float32, count=1) if 202021.25 != magic: raise NotImplementedError w = np.fromfile(f, np.int32, count=1)[0] h = np.fromfile(f, np.int32, count=1)[0] flow = np.fromfile(f, np.float32, count=2 * w * h) flow = flow.reshape(h, w, 2) return flow def read_flow_png(file_path: str) -> np.ndarray: img = cv2.imread(file_path, cv2.IMREAD_UNCHANGED).astype(np.float32) # 确保图像有足够的通道 if len(img.shape) != 3 or img.shape[2] < 2: raise NotImplementedError u = (img[:, :, 2] - 32768.0) / 64.0 # R v = (img[:, :, 1] - 32768.0) / 64.0 # G flow = np.stack([u, v], axis=2) return flow def calculate_epe(flow_gt: np.ndarray, flow_pred: np.ndarray) -> Tuple[float, np.ndarray]: if flow_gt.shape != flow_pred.shape: raise NotImplementedError diff = flow_gt - flow_pred epe_map = np.sqrt(np.sum(diff ** 2, axis=2)) mean_epe = np.mean(epe_map) return mean_epe, epe_map class Sa2VAModel: def __init__(self, model_name="ByteDance/Sa2VA-4B"): self.model_name = model_name model = AutoModel.from_pretrained( model_name, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, use_flash_attn=True, trust_remote_code=True, ).eval().cuda() tokenizer = AutoTokenizer.from_pretrained( model_name, trust_remote_code=True, ) self.model = model self.tokenizer = tokenizer def generate(self, input_dict): pred_dict = self.model.predict_forward(**input_dict, tokenizer=self.tokenizer) if 'prediction_masks' in pred_dict.keys() and pred_dict['prediction_masks'] and len( pred_dict['prediction_masks']) != 0: masks = pred_dict['prediction_masks'][0] # (f, h, w) else: masks = None text_response = pred_dict["prediction"] return text_response, masks @dataclass class Instance: input: Dict[str, Any] output: Dict[str, Any] id: str class BaseTask(ABC): def __init__(self, task_data: Dict[str, Any], model): self.task_data = task_data self.model = model self.data = self._parse_data(task_data) @abstractmethod def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]: pass @abstractmethod def evaluate(self) -> Dict[str, float]: pass @abstractmethod def run_inference(self): pass def get_bbox_from_mask(mask): if len(mask.shape) != 2: raise NotImplementedError y_indices, x_indices = np.nonzero(mask) if len(x_indices) == 0 or len(y_indices) == 0: return None x_min = np.min(x_indices) x_max = np.max(x_indices) y_min = np.min(y_indices) y_max = np.max(y_indices) return (x_min, y_min, x_max-x_min, y_max-y_min) def mask2bbox(masks, video_length): if masks is None: bboxes = [[0, 0, 0, 0]] * video_length else: bboxes = [] for mask in masks: bbox = get_bbox_from_mask(mask) if bbox is None: bbox = [0, 0, 0, 0] bboxes.append(bbox) return bboxes class MatchTask(BaseTask): def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]: return [Instance(input=d["input"], output=d["output"], id=d["id"]) for d in task_data["data"]] def run_inference(self): self.predictions = [] self.references = [] for inst in tqdm.tqdm(self.data): prompt = "\n" + inst.input["prompt"] video_folder = inst.input["video_folder"] frame_files = [os.path.join(video_folder, _name) for _name in os.listdir(video_folder)] video = [] for image_path in frame_files: video.append(Image.open(image_path).convert('RGB')) input_dict = { "video": video, "text": prompt, } response, _ = self.model.generate(input_dict, max_new_tokens=256) response = response.split("<")[0].strip() self.predictions.append(response) self.references.append(inst.output["answer"]) def evaluate(self) -> Dict[str, float]: acc = exact_match_accuracy(self.predictions, self.references) return {"accuracy": acc} class TrackingTask(BaseTask): def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]: return [Instance(input=d["input"], output=d["output"], id=d["id"]) for d in task_data["data"]] def run_inference(self): self.predictions = [] self.references = [] for inst in tqdm.tqdm(self.data): prompt = "\n" + inst.input["prompt"] video_folder = inst.input["video_folder"] frame_files = [os.path.join(video_folder, _name) for _name in os.listdir(video_folder)] video = [] for image_path in frame_files: video.append(Image.open(image_path).convert('RGB')) input_dict = { "video": video, "text": prompt, } response, masks = self.model.generate(input_dict, max_new_tokens=256) bboxes = mask2bbox(masks, len(video)) self.predictions.append(bboxes) self.references.append(inst.output["answer"]) def evaluate(self) -> Dict[str, float]: j_f, n = 0, 1e-4 for pred_bboxes, gt_bboxes in zip(self.predictions, self.references): metrics = calculate_j_and_f_metrics(pred_bboxes, gt_bboxes) j_f += (metrics['J_metric'] + metrics['F_metric']) / 2.0 n += 1 j_f = j_f / n return {"J&F": j_f} class FlowTask(BaseTask): def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]: return [Instance(input=d["input"], output=d["output"], id=d["id"]) for d in task_data["data"]] def run_inference(self): self.predictions = [] self.references = [] for inst in tqdm.tqdm(self.data): prompt = "\n" + inst.input["prompt"] video_folder = inst.input["video_folder"] frame_files = [os.path.join(video_folder, _name) for _name in os.listdir(video_folder)] video = [] for image_path in frame_files: video.append(Image.open(image_path).convert('RGB')) input_dict = { "video": video, "text": prompt, } response, masks = self.model.generate(input_dict, max_new_tokens=256) pred_flows = np.zeros(masks.shape[1], masks.shape[2], 2) self.predictions.append(pred_flows) self.references.append(read_flow(inst.output["flow"])) def evaluate(self) -> Dict[str, float]: EPE, n = 0, 1e-4 for pred_flow, gt_flow in zip(self.predictions, self.references): mean_epe, _ = calculate_epe(pred_flow, gt_flow) EPE += mean_epe n += 1 EPE = EPE / n return {"EPE": EPE} def log_performance(model_name, task_name, metrics, root_path, output_file='performance_log.csv'): import csv file_exists = os.path.isfile(os.path.join(root_path, output_file)) row_data = { 'model': model_name, 'task': task_name, 'metrics': str(metrics) } with open(os.path.join(root_path, output_file), mode='a', newline='', encoding='utf-8') as f: writer = csv.DictWriter(f, fieldnames=row_data.keys()) if not file_exists: writer.writeheader() writer.writerow(row_data) def log_performance_detail(model_name, task_name, metrics, root_path, output_file='performance_log.csv'): import csv file_path = os.path.join(root_path, output_file) file_exists = os.path.isfile(file_path) # 从metrics字典中获取主要指标值 metric_value = None if isinstance(metrics, dict): # 按照优先级选择指标 for key in ['accuracy', 'f1', 'micro_f1', 'bleu4', 'rougeL', 'code_bleu', 'MAE']: if key in metrics: metric_value = metrics[key] break if metric_value is None and len(metrics) > 0: # 如果没有找到优先指标,使用第一个指标 metric_value = list(metrics.values())[0] else: metric_value = metrics # 简化文件名,只保留最后一部分 model_name = model_name.split('/')[-1] if file_exists: # 读取现有数据 rows = [] tasks = set() with open(file_path, 'r', newline='', encoding='utf-8') as f: reader = csv.reader(f) header = next(reader, ['task', model_name]) # 如果文件为空,使用默认表头 if len(header) == 1: # 如果只有task列,添加model列 header.append(model_name) rows.append(header) # 读取现有数据并更新 for row in reader: if row[0] == task_name: # 如果找到相同任务,更新值 row = [task_name, str(metric_value)] tasks.add(row[0]) rows.append(row) # 如果是新任务,添加新行 if task_name not in tasks: rows.append([task_name, str(metric_value)]) else: # 创建新文件 rows = [ ['task', model_name], [task_name, str(metric_value)] ] # 写入所有数据 with open(file_path, 'w', newline='', encoding='utf-8') as f: writer = csv.writer(f) writer.writerows(rows) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--root_path", type=str, default="General-Bench-Openset/video/comprehension") parser.add_argument("--model_name", type=str, default="ByteDance/Sa2VA-4B") args = parser.parse_args() root_path = args.root_path model_name = args.model_name model = Sa2VAModel(model_name=model_name) task_files = [ "AnimalTrack", "GreenWaterTrack", "LongVideoHumanTrack", "RelationMatch", "UAVUAVTrack", "BallTrack", "HumanPartTrack", "LongVideoVehicleTrack", "ShapeMatch", "UAVVehicleTrack", "BlueWaterTrack", "HumanTrack", "MotionMatch", "SizeMatch", "VehicleTrack", "ColorMatch", "LOGOMarkerMatch", "ObjectMarkerMatch", "SyntheticSceneFlowEstimate", "WhiteWaterTrack", "ComplexSceneFlowEstimate", "LongVideoAnimalTrack", "OtherPartTrack", "UAVBuildingTrack", "YellowWaterTrack", "CrowdTrack", "LongVideoCrowdTrack", "PanoramicFlowEstimate", "UAVGeneralObjectTrack", "GeneralObjectTrack", "LongVideoGeneralObjectTrack", "PositionMatch", "UAVHumanTrack"] task_files = [w + '.json' if not w.endswith('json') else w for w in task_files] if isinstance(task_files, str): task_files = [task_files] for idx, filename in enumerate(task_files): file_path = os.path.join(root_path, f"{filename.replace('.json', '')}/", filename) if not os.path.exists(file_path): continue with open(file_path, 'r', encoding='utf-8') as f: task_data = json.load(f) task_type = task_data["type"] task_name = task_data["task"] print(f"Running evaluation for task {idx + 1}: {task_name}") # 定义任务类型与任务类的映射字典 TASK_MAPPING = { "AnimalTrack": TrackingTask, "GreenWaterTrack": TrackingTask, "LongVideoHumanTrack": TrackingTask, "RelationMatch": MatchTask, "UAVUAVTrack": TrackingTask, "BallTrack": TrackingTask, "HumanPartTrack": TrackingTask, "LongVideoVehicleTrack": TrackingTask, "ShapeMatch": MatchTask, "UAVVehicleTrack": TrackingTask, "BlueWaterTrack": TrackingTask, "HumanTrack": TrackingTask, "MotionMatch": MatchTask, "SizeMatch": MatchTask, "VehicleTrack": TrackingTask, "ColorMatch": MatchTask, "LOGOMarkerMatch": MatchTask, "ObjectMarkerMatch": MatchTask, "SyntheticSceneFlowEstimate": FlowTask, "WhiteWaterTrack": TrackingTask, "ComplexSceneFlowEstimate": FlowTask, "LongVideoAnimalTrack": TrackingTask, "OtherPartTrack": TrackingTask, "UAVBuildingTrack": TrackingTask, "YellowWaterTrack": TrackingTask, "CrowdTrack": TrackingTask, "LongVideoCrowdTrack": TrackingTask, "PanoramicFlowEstimate": FlowTask, "UAVGeneralObjectTrack": TrackingTask, "GeneralObjectTrack": TrackingTask, "LongVideoGeneralObjectTrack": TrackingTask, "PositionMatch": MatchTask, "UAVHumanTrack": TrackingTask, } # 根据 task_type 获取对应的任务类 task_class = TASK_MAPPING.get(task_type) # 使用精确匹配 if task_class is None: raise NotImplementedError else: task = task_class(task_data, model) task.run_inference() metrics = task.evaluate() print("Task name: ", task_name, "Task type: ", task_type, "Evaluation results:", metrics) log_performance(model_name, task_name, metrics, root_path)