from abc import ABC, abstractmethod from dataclasses import dataclass import os from typing import Dict, Any, List import json import torch import tqdm import argparse from transformers import AutoModelForCausalLM, AutoTokenizer from PIL import Image import pycocotools.mask as mask_util import numpy as np PREFIX = 'data' PROMPT = { 'VOS': '\nPlease segment the major object in the video.', 'RVOS': '\nPlease segment {}.', 'ActionDet': '\nPlease detect {}.', 'VDE': '\nPlease generate the depth map of the video.', } @dataclass class Instance: input: Dict[str, Any] output: Dict[str, Any] id: str class BaseTask(ABC): def __init__(self, task_data: str, model): self.task_data = task_data self.model = model self.task_name = os.path.basename(task_data) self.data = self._parse_data(task_data) @abstractmethod def _parse_data(self, task_data: str) -> List[Instance]: pass @abstractmethod def evaluate(self, results:List[Instance]) -> Dict[str, float]: pass @abstractmethod def run_inference(self) -> List[Instance]: pass class TaskVOS(BaseTask): def _load_video(self, video_path: str) -> List[Image.Image]: video_frames = [] for frame_file in sorted(os.listdir(video_path)): if frame_file.endswith('.jpg') or frame_file.endswith('.png'): frame_path = os.path.join(video_path, frame_file) video_frames.append(Image.open(frame_path).convert('RGB')) return video_frames def _parse_data(self, task_data: str) -> List[Instance]: json_path = os.path.join(task_data, 'annotation.json') json_data = json.load(open(json_path, 'r')) results = [] json_data_data = json_data['data'] for json_item in json_data_data: input_dict = {} input_dict['video_folder'] = json_item['input']['video_folder'] input_dict['video'] = self._load_video(os.path.join(task_data, input_dict['video_folder'])) output_dict = {} output_dict['serilized_masks'] = json_item['output'] output_dict['masks'] = [] for mask_id, mask_data in output_dict['serilized_masks'].items(): mask = mask_util.decode(mask_data['mask']) output_dict['masks'].append(mask) instance_id = json_item['id'] results.append(Instance(input=input_dict, output=output_dict, id=instance_id)) return results def evaluate(self, results:List[Instance]) -> Dict[str, float]: iou_list = [] for instance in results: masks = instance.output['masks'] prediction_masks = instance.output['prediction_masks'] assert len(masks) == len(prediction_masks), "Number of masks and prediction masks do not match." intersection = 0. union = 0. for gt_mask, pred_mask in zip(masks, prediction_masks): intersection += (gt_mask.astype(bool) & pred_mask.astype(bool)).sum() union += (gt_mask | pred_mask).sum() iou = intersection / union if union > 0 else 0.0 iou_list.append(iou) iou_mean = np.mean(iou_list).item() * 100 return {"IoU": iou_mean} def run_inference(self) -> List[Instance]: results = [] for instance in tqdm.tqdm(self.data, desc=f"Running inference on {self.task_name}"): input_data = instance.input result = self.model.predict_forward( video=input_data['video'], text=PROMPT['VOS'], ) # output postprocessing output_masks = result['prediction_masks'] instance.output['prediction_masks'] = output_masks[0] results.append(instance) return results class TaskRVOS(BaseTask): def _load_video(self, video_path: str) -> List[Image.Image]: video_frames = [] for frame_file in sorted(os.listdir(video_path)): if frame_file.endswith('.jpg') or frame_file.endswith('.png'): frame_path = os.path.join(video_path, frame_file) video_frames.append(Image.open(frame_path).convert('RGB')) return video_frames def _parse_data(self, task_data: str) -> List[Instance]: json_path = os.path.join(task_data, 'annotation.json') json_data = json.load(open(json_path, 'r')) results = [] json_data_data = json_data['data'] for json_item in json_data_data: input_dict = {} input_dict['video_folder'] = json_item['input']['video_folder'] input_dict['video'] = self._load_video(os.path.join(task_data, input_dict['video_folder'])) input_dict['prompt'] = json_item['input']['prompt'] output_dict = {} output_dict['serilized_masks'] = json_item['output'] output_dict['masks'] = [] for mask_id, mask_data in output_dict['serilized_masks'].items(): mask = mask_util.decode(mask_data['mask']) output_dict['masks'].append(mask) instance_id = json_item['id'] results.append(Instance(input=input_dict, output=output_dict, id=instance_id)) return results def evaluate(self, results:List[Instance]) -> Dict[str, float]: iou_list = [] for instance in results: masks = instance.output['masks'] prediction_masks = instance.output['prediction_masks'] assert len(masks) == len(prediction_masks), "Number of masks and prediction masks do not match." intersection = 0. union = 0. for gt_mask, pred_mask in zip(masks, prediction_masks): intersection += (gt_mask.astype(bool) & pred_mask.astype(bool)).sum() union += (gt_mask | pred_mask).sum() iou = intersection / union if union > 0 else 0.0 iou_list.append(iou) iou_mean = np.mean(iou_list).item() * 100 return {"IoU": iou_mean} def run_inference(self) -> List[Instance]: results = [] for instance in tqdm.tqdm(self.data, desc=f"Running inference on {self.task_name}"): input_data = instance.input result = self.model.predict_forward( video=input_data['video'], text=PROMPT['RVOS'].format(input_data['prompt']), ) # output postprocessing output_masks = result['prediction_masks'] instance.output['prediction_masks'] = output_masks[0] results.append(instance) return results class TaskActionDet(BaseTask): def _load_video(self, video_path: str) -> List[Image.Image]: import cv2 cap = cv2.VideoCapture(video_path) img_list = [] while cap.isOpened(): ret, frame = cap.read() if not ret: break frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) img_list.append(Image.fromarray(frame).convert('RGB')) return img_list def _parse_data(self, task_data: str) -> List[Instance]: if self.task_name in ['AnimalVG', 'AutoVG', 'HumanVG']: self.is_vg = True else: self.is_vg = False json_path = os.path.join(task_data, 'annotation.json') json_data = json.load(open(json_path, 'r')) results = [] json_data_data = json_data['data'] for json_item in json_data_data: video_path = os.path.join(self.task_data, 'videos', json_item['video_path']) image_list = self._load_video(video_path) assert len(image_list) > 0, f"Video {video_path} has no frames." if len(image_list) != json_item['frame_count']: print(f"Warning: Frame count mismatch for video {video_path}. Expected {json_item['frame_count']}, got {len(image_list)}.") while len(image_list) < json_item['frame_count']: image_list.append(image_list[-1]) input_dict = {} input_dict['video'] = image_list input_dict['prompt'] = json_item['caption'] output_dict = {} if self.is_vg: output_dict['tube_start_frame'] = json_item['tube_start_frame'] output_dict['tube_end_frame'] = json_item['tube_end_frame'] else: output_dict['tube_start_frame'] = json_item['tube_start_frame'] - 1 output_dict['tube_end_frame'] = json_item['tube_end_frame'] - 1 trajectory = json_item['trajectory'] if self.is_vg: trajectory = [trajectory[frame_id_str]['bbox'] for frame_id_str in trajectory if output_dict['tube_start_frame'] <= int(frame_id_str) < output_dict['tube_end_frame']] assert len(trajectory) == output_dict['tube_end_frame'] - output_dict['tube_start_frame'] bboxes = [] for _ in range(output_dict['tube_start_frame']): bboxes.append([0, 0, 0, 0]) # trajectory is a list of [x, y, w, h] for each frame for item in trajectory: x, y, w, h = item bbox = [x, y, x + w, y + h] bboxes.append(bbox) for _ in range(output_dict['tube_end_frame'], len(image_list)): bboxes.append([0, 0, 0, 0]) output_dict['bboxes'] = bboxes instance_id = json_item['original_video_id'] results.append(Instance(input=input_dict, output=output_dict, id=instance_id)) return results def evaluate(self, results:List[Instance]) -> Dict[str, float]: iou_list = [] for instance in results: boxes = instance.output['bboxes'] prediction_boxes = instance.output['prediction_boxes'] assert len(boxes) == len(prediction_boxes), "Number of boxes and prediction boxes do not match." iou = 0. frame_union = 0 for gt_box, pred_box in zip(boxes, prediction_boxes): gt_box = np.array(gt_box) pred_box = np.array(pred_box) if np.all(gt_box == 0) and np.all(pred_box == 0): continue frame_union += 1 if np.all(gt_box == 0) or np.all(pred_box == 0): continue intersection = np.maximum(0, np.minimum(gt_box[2:], pred_box[2:]) - np.maximum(gt_box[:2], pred_box[:2])) intersection_area = intersection[0] * intersection[1] gt_area = (gt_box[2] - gt_box[0]) * (gt_box[3] - gt_box[1]) pred_area = (pred_box[2] - pred_box[0]) * (pred_box[3] - pred_box[1]) union_area = gt_area + pred_area - intersection_area iou += intersection_area / union_area if frame_union > 0: iou /= frame_union iou_list.append(iou) iou_mean = np.mean(iou_list).item() * 100 return {"vIoU": iou_mean} def run_inference(self) -> List[Instance]: results = [] for instance in tqdm.tqdm(self.data, desc=f"Running inference on {self.task_name}"): input_data = instance.input result = self.model.predict_boxes( video=input_data['video'], text=PROMPT['ActionDet'].format(input_data['prompt']), ) # output postprocessing output_masks = result['prediction_boxes'] instance.output['prediction_boxes'] = output_masks[0] results.append(instance) return results class TaskVDE(BaseTask): def _load_video(self, video_path: str) -> List[Image.Image]: import cv2 cap = cv2.VideoCapture(video_path) img_list = [] while cap.isOpened(): ret, frame = cap.read() if not ret: break frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) img_list.append(Image.fromarray(frame).convert('RGB')) return img_list def _parse_data(self, task_data: str) -> List[Instance]: json_path = os.path.join(task_data, 'annotation.json') json_data = json.load(open(json_path, 'r')) results = [] json_data_data = json_data['data'] for json_item in json_data_data: video_path = os.path.join(self.task_data, 'video', json_item['input']) annotation_path = os.path.join(self.task_data, 'depth', json_item['output']) instance_id = json_item['id'] assert os.path.exists(video_path), f"Video path {video_path} does not exist." assert os.path.exists(annotation_path), f"Annotation path {annotation_path} does not exist" input_dict = {} input_dict['video'] = self._load_video(video_path) output_dict = {} output_dict['depth_map'] = np.load(annotation_path)['disparity'] # nf, 1, h, w assert len(input_dict['video']) == output_dict['depth_map'].shape[0], "Number of video frames and depth map frames do not match." assert output_dict['depth_map'].ndim == 4, "Depth map should be 4-dimensional (nf, 1, h, w)." assert input_dict['video'][0].size == (output_dict['depth_map'].shape[3], output_dict['depth_map'].shape[2]), "Video frame size does not match depth map size." results.append(Instance(input=input_dict, output=output_dict, id=instance_id)) return results def _abs_relative_difference(self, output, target, valid_mask=None): actual_output = output[valid_mask] actual_target = target[valid_mask] abs_relative_diff = np.abs(actual_output - actual_target) / actual_target return abs_relative_diff.mean() def evaluate(self, results:List[Instance]) -> Dict[str, float]: abs_rel_list = [] dataset_max_depth = 80 for instance in results: depth_map = instance.output['depth_map'] prediction_depth = instance.output['prediction_depth'] assert depth_map.shape == prediction_depth.shape, "Depth map and prediction depth shape do not match." # Calculate absolute relative error gt_disp = depth_map[:, 0] pred_disp = prediction_depth[:, 0] # valid mask valid_mask = np.logical_and( (gt_disp > 1e-3), (gt_disp < dataset_max_depth) ) pred_disp = np.clip(pred_disp, a_min=1e-3, a_max=None) pred_disp_masked = pred_disp[valid_mask].reshape((-1, 1)) gt_disp_maksed = gt_disp[valid_mask].reshape((-1, 1)).astype(np.float64) # calc scale and shift _ones = np.ones_like(pred_disp_masked) A = np.concatenate([pred_disp_masked, _ones], axis=-1) X = np.linalg.lstsq(A, gt_disp_maksed, rcond=None)[0] scale, shift = X # gt = scale * pred + shift # align aligned_pred = scale * pred_disp + shift aligned_pred = np.clip(aligned_pred, a_min=1e-3, a_max=None) pred_depth = aligned_pred gt_depth = gt_disp # metric evaluation, clip to dataset min max pred_depth = np.clip( pred_depth, a_min=1e-3, a_max=dataset_max_depth ) abs_rel = self._abs_relative_difference( pred_depth, gt_depth, valid_mask=valid_mask ) abs_rel_list.append(abs_rel) abs_rel_mean = np.mean(abs_rel_list).item() def sigmoid(x): return 1 / (1 + np.exp(-x)) score = (sigmoid(0.1 / (abs_rel_mean + 1e-6)) * 2 - 1) * 100 return {"absRel": abs_rel_mean, "score": score} def run_inference(self) -> List[Instance]: results = [] for instance in tqdm.tqdm(self.data, desc=f"Running inference on {self.task_name}"): input_data = instance.input result = self.model.predict_depth( video=input_data['video'], text=PROMPT['VDE'], ) # output postprocessing depth_map = result['prediction_depth'] instance.output['prediction_depth'] = depth_map results.append(instance) return results tasks = { 'AnimalVOS': TaskVOS, 'AutoVOS':TaskVOS, 'HumanVOS':TaskVOS, 'SportsVOS':TaskVOS, ## IW 'IWAnimalVOS':TaskVOS, 'IWAutoVOS':TaskVOS, 'IWFurnitureVOS':TaskVOS, 'IWHumanVOS':TaskVOS, ## Street 'AutoStreetVOS':TaskVOS, 'BicycleStreetVOS':TaskVOS, 'HumanStreetVOS':TaskVOS, # RVOS 'AnimalRVOS':TaskRVOS, 'HumanRVOS':TaskRVOS, ## ReVOS, 'AnimalReVOS':TaskRVOS, 'AutoReVOS': TaskRVOS, 'HumanReVOS': TaskRVOS, ## CReVOS 'AnimalCReVOS': TaskRVOS, 'AutoCReVOS' : TaskRVOS, 'HumanCReVOS': TaskRVOS, 'HumanPartCReVOS': TaskRVOS, 'EquipmentCReVOS': TaskRVOS, ## Action Det # V-C-10 HCSTVG2 'StaticActionDet': TaskActionDet, 'DynamicActionDet': TaskActionDet, # V-C-12 VidSTG 'AnimalVG': TaskActionDet, 'AutoVG': TaskActionDet, 'HumanVG': TaskActionDet, ## VDE 'StaticVDE': TaskVDE, 'StreetVDE': TaskVDE, 'SynVDE': TaskVDE, 'DynamicVDE': TaskVDE, } def predict_dummy_boxes(video, text): # Dummy function to simulate box prediction # In practice, this should call the model's prediction method num_frames = len(video) return { 'prediction_boxes': [ [[0,0, 100, 100]] * num_frames, # Example boxes, [0, 0, 0, 0] is empty box ] } def predict_dummy_depth(video, text): # Dummy function to simulate depth prediction # In practice, this should call the model's prediction method num_frames = len(video) width, height = video[0].size return { 'prediction_depth': np.random.rand(num_frames, 1, height, width).astype(np.float32) * 80 # Random depth values } def main(root:str, model_path:str): metrics = {} model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, use_flash_attn=True, trust_remote_code=True, ).eval().cuda() tokenizer = AutoTokenizer.from_pretrained( model_path, trust_remote_code=True ) model.preparing_for_generation(tokenizer=tokenizer) model.predict_boxes = predict_dummy_boxes model.predict_depth = predict_dummy_depth for task_name in tasks: task_class = tasks[task_name] task_data_path = os.path.join(root, task_name) task_instance = task_class(task_data=task_data_path, model=model) results = task_instance.run_inference() evaluation_results = task_instance.evaluate(results) metrics[task_instance.task_name] = evaluation_results print(metrics) if __name__ == "__main__": # root = os.path.join(PREFIX, "General-Bench-Openset/video/comprehension") import argparse parser = argparse.ArgumentParser(description="Run video tasks evaluation.") parser.add_argument("--model_path", type=str, default='ByteDance/Sa2VA-4B', required=False, help="Model to use for evaluation") parser.add_argument("--root_path", type=str, default="General-Bench-Openset/video/comprehension", required=False, help="Root path to the dataset") args = parser.parse_args() main(args.root_path, args.model_path)