from typing import List from utils.data_types import ModalityType, TaskType, TaskResult from utils.base_processor import BaseModalityProcessor class VideoProcessor(BaseModalityProcessor): """视频模态处理器""" def __init__(self, modality: ModalityType, dataset_dir: str, pred_json_file: str): super().__init__(modality, dataset_dir, pred_json_file) def process_comprehension(self) -> List[TaskResult]: """处理视频理解类任务 需要返回一个TaskResult列表,每个TaskResult包含: - task_name: 任务名称,例如 "action_recognition", "video_classification" 等 - metric: 评估指标,例如 "accuracy", "mAP" 等 - score: 评估分数 - task_type: 默认为 TaskType.COMPREHENSION,不需要指定 示例格式: return [ TaskResult( task_name="action_recognition", metric="accuracy", score=0.88 ), TaskResult( task_name="video_classification", metric="accuracy", score=0.92 ) ] """ return [] def process_generation(self) -> List[TaskResult]: """处理视频生成类任务 需要返回一个TaskResult列表,每个TaskResult包含: - task_name: 任务名称,例如 "video_generation", "video_prediction" 等 - metric: 评估指标,例如 "FVD", "PSNR" 等 - score: 评估分数 - task_type: 需要指定为 TaskType.GENERATION 示例格式: return [ TaskResult( task_name="video_generation", metric="FVD", score=45.2, task_type=TaskType.GENERATION ), TaskResult( task_name="video_prediction", metric="PSNR", score=25.8, task_type=TaskType.GENERATION ) ] """ return [] # 使用示例 if __name__ == "__main__": processor = VideoProcessor(ModalityType.VIDEO, "") # 测试理解任务 print("\n理解类任务结果:") for task in processor.process_comprehension(): print(f"任务: {task.task_name}") print(f"指标: {task.metric}") print(f"分数: {task.score}") print("-" * 20) # 测试生成任务 print("\n生成类任务结果:") for task in processor.process_generation(): print(f"任务: {task.task_name}") print(f"指标: {task.metric}") print(f"分数: {task.score}") print("-" * 20)