GeoloeG commited on
Commit
5499ef0
·
verified ·
1 Parent(s): 534fc6b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -13
README.md CHANGED
@@ -2,27 +2,49 @@
2
  language:
3
  - en
4
  license: other
5
- base_model: unsloth/Phi-4
6
- library_name: peft
7
  tags:
8
  - text-generation
9
- - peft
10
  - lora
11
- - quantization
12
- model_type: phi-4b-peft
 
13
  inference:
14
  parameters:
15
- temperature: 0
16
- min_p: 0.95
17
  max_new_tokens: 2048
18
  pipeline_tag: text-generation
 
19
  quantization_config:
20
  load_in_4bit: true
21
  bnb_4bit_compute_dtype: float16
22
  bnb_4bit_quant_type: nf4
23
- llm_int8_threshold: 6
24
- llm_int8_skip_modules: null
25
- llm_int8_enable_fp32_cpu_offload: false
26
- llm_int8_has_fp16_weight: false
27
- task_type: CAUSAL_LM
28
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  language:
3
  - en
4
  license: other
5
+ base_model: microsoft/phi-2 # Update with your base model
6
+ library_name: peft transformers bitsandbytes
7
  tags:
8
  - text-generation
 
9
  - lora
10
+ - 4bit-quantization
11
+ - autopeft
12
+ model_type: causal-lm
13
  inference:
14
  parameters:
15
+ temperature: 0.0
16
+ min_p: 1.0
17
  max_new_tokens: 2048
18
  pipeline_tag: text-generation
19
+ task_type: CAUSAL_LM
20
  quantization_config:
21
  load_in_4bit: true
22
  bnb_4bit_compute_dtype: float16
23
  bnb_4bit_quant_type: nf4
24
+ bnb_4bit_use_double_quant: true
25
+ ---
26
+
27
+ # Model Card for Phi-4 LoRA Model
28
+
29
+ ## Model Description
30
+
31
+ Quantized LoRA adapter for Microsoft's Phi-2 model, fine-tuned for light pattern generation tasks.
32
+
33
+ ## Usage
34
+
35
+ ```python
36
+ from peft import AutoPeftModelForCausalLM
37
+ from transformers import AutoTokenizer
38
+
39
+ # Load model with 4-bit quantization
40
+ model = AutoPeftModelForCausalLM.from_pretrained(
41
+ "your-username/phi4_lora_model",
42
+ load_in_4bit=True, # Automatically uses config from quantization_config
43
+ device_map="auto"
44
+ )
45
+
46
+ # Load standard Transformers tokenizer
47
+ tokenizer = AutoTokenizer.from_pretrained(
48
+ "your-username/phi4_lora_model",
49
+ use_fast=True
50
+ )