Update README.md
Browse files
README.md
CHANGED
@@ -2,27 +2,49 @@
|
|
2 |
language:
|
3 |
- en
|
4 |
license: other
|
5 |
-
base_model:
|
6 |
-
library_name: peft
|
7 |
tags:
|
8 |
- text-generation
|
9 |
-
- peft
|
10 |
- lora
|
11 |
-
- quantization
|
12 |
-
|
|
|
13 |
inference:
|
14 |
parameters:
|
15 |
-
temperature: 0
|
16 |
-
min_p: 0
|
17 |
max_new_tokens: 2048
|
18 |
pipeline_tag: text-generation
|
|
|
19 |
quantization_config:
|
20 |
load_in_4bit: true
|
21 |
bnb_4bit_compute_dtype: float16
|
22 |
bnb_4bit_quant_type: nf4
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
language:
|
3 |
- en
|
4 |
license: other
|
5 |
+
base_model: microsoft/phi-2 # Update with your base model
|
6 |
+
library_name: peft transformers bitsandbytes
|
7 |
tags:
|
8 |
- text-generation
|
|
|
9 |
- lora
|
10 |
+
- 4bit-quantization
|
11 |
+
- autopeft
|
12 |
+
model_type: causal-lm
|
13 |
inference:
|
14 |
parameters:
|
15 |
+
temperature: 0.0
|
16 |
+
min_p: 1.0
|
17 |
max_new_tokens: 2048
|
18 |
pipeline_tag: text-generation
|
19 |
+
task_type: CAUSAL_LM
|
20 |
quantization_config:
|
21 |
load_in_4bit: true
|
22 |
bnb_4bit_compute_dtype: float16
|
23 |
bnb_4bit_quant_type: nf4
|
24 |
+
bnb_4bit_use_double_quant: true
|
25 |
+
---
|
26 |
+
|
27 |
+
# Model Card for Phi-4 LoRA Model
|
28 |
+
|
29 |
+
## Model Description
|
30 |
+
|
31 |
+
Quantized LoRA adapter for Microsoft's Phi-2 model, fine-tuned for light pattern generation tasks.
|
32 |
+
|
33 |
+
## Usage
|
34 |
+
|
35 |
+
```python
|
36 |
+
from peft import AutoPeftModelForCausalLM
|
37 |
+
from transformers import AutoTokenizer
|
38 |
+
|
39 |
+
# Load model with 4-bit quantization
|
40 |
+
model = AutoPeftModelForCausalLM.from_pretrained(
|
41 |
+
"your-username/phi4_lora_model",
|
42 |
+
load_in_4bit=True, # Automatically uses config from quantization_config
|
43 |
+
device_map="auto"
|
44 |
+
)
|
45 |
+
|
46 |
+
# Load standard Transformers tokenizer
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
48 |
+
"your-username/phi4_lora_model",
|
49 |
+
use_fast=True
|
50 |
+
)
|