File size: 2,133 Bytes
79f665b
ec07fc8
 
 
 
 
 
 
 
 
 
 
 
79f665b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
language:
- multilingual
- en
- fr
- es
- de
- zh
- ar
- ru
- pt
- it
- ur

datasets: wikipedia

license: apache-2.0

widget:
- text: "Google generated 46 billion [MASK] in revenue."
- text: "Paris is the capital of [MASK]."
- text: "Algiers is the largest city in [MASK]."
- text: "Paris est la [MASK] de la France."
- text: "Paris est la capitale de la [MASK]."
- text: "L'élection américaine a eu [MASK] en novembre 2020."
- text: "تقع سويسرا في [MASK] أوروبا"
- text: "إسمي محمد وأسكن في [MASK]."
---

# bert-base-10lang-cased

We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages.

Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy.

This model handles the following languages: english, french, spanish, german, chinese, arabic, russian, portuguese, italian, and urdu. It produces the same representations as [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) while being 22.5% smaller in size.

For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf).

## How to use

```python
from transformers import AutoTokenizer, AutoModel

tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-10lang-cased")
model = AutoModel.from_pretrained("Geotrend/bert-base-10lang-cased")

```

To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers).

### How to cite

```bibtex
@inproceedings{smallermbert,
  title={Load What You Need: Smaller Versions of Multilingual BERT},
  author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire},
  booktitle={SustaiNLP / EMNLP},
  year={2020}
}
```

## Contact 

Please contact [email protected] for any question, feedback or request.