Geraldine commited on
Commit
ea6e9b2
·
verified ·
1 Parent(s): d8a3755

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +115 -177
README.md CHANGED
@@ -1,199 +1,137 @@
1
  ---
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
 
 
 
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
192
 
193
- ## Model Card Authors [optional]
 
 
 
 
 
 
 
 
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: llama3.2
4
  ---
5
 
6
+ Certainly! Below is a draft for the README of your Hugging Face repository containing the QLoRA adapters. This README is structured to provide clear and concise information about the adapters, their purpose, and how to use them.
7
 
8
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
+ # FineLlama-3.2-3B-Instruct-ead QLoRA Adapters
11
 
12
+ This repository contains the QLoRA (Quantized Low-Rank Adaptation) adapters for the **FineLlama-3.2-3B-Instruct-ead** model. These adapters are designed to be used with the base [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) model to enable efficient fine-tuning for generating EAD (Encoded Archival Description) XML format for archival records.
13
 
14
+ ## Overview
15
 
16
+ The QLoRA adapters were trained using **Parameter Efficient Fine-Tuning (PEFT)** with LoRA (Low-Rank Adaptation) on the [Geraldine/Ead-Instruct-38k](https://huggingface.co/datasets/Geraldine/Ead-Instruct-38k) dataset. This approach allows for memory-efficient fine-tuning while maintaining high performance for the task of generating EAD/XML-compliant archival descriptions.
17
 
18
+ ### Key Features
19
+ - **Efficient Fine-Tuning**: Uses 4-bit quantization and LoRA to reduce memory usage.
20
+ - **Compatibility**: Designed to work with the base `meta-llama/Llama-3.2-3B-Instruct` model.
21
+ - **Specialization**: Optimized for generating EAD/XML archival metadata.
22
 
23
+ ---
24
 
25
+ ## Adapter Details
26
+
27
+ ### Training Configuration
28
+ - **Quantization**: 4-bit quantization using `bitsandbytes`.
29
+ - Quantization Type: `nf4`
30
+ - Double Quantization: Enabled
31
+ - Compute Dtype: `bfloat16`
32
+ - **LoRA Configuration**:
33
+ - Rank (`r`): 256
34
+ - Alpha (`alpha`): 128
35
+ - Dropout: 0.05
36
+ - Target Modules: All linear layers
37
+ - **Training Parameters**:
38
+ - Epochs: 3
39
+ - Batch Size: 3
40
+ - Gradient Accumulation Steps: 2
41
+ - Learning Rate: 2e-4
42
+ - Warmup Ratio: 0.03
43
+ - Max Sequence Length: 4096
44
+ - Scheduler: Constant
45
+
46
+ ### Training Infrastructure
47
+ - Libraries: `transformers`, `peft`, `trl`
48
+ - Mixed Precision: `FP16/BF16` (based on hardware support)
49
+ - Optimizer: `fused adamw`
50
 
51
+ ---
52
 
53
+ ## Usage
54
+
55
+ To use the QLoRA adapters, you need to load the base model and apply the adapters using the `peft` library.
56
+
57
+ ### Installation
58
+ ```bash
59
+ pip install transformers torch bitsandbytes peft
60
+ ```
61
+
62
+ ### Loading the Model with Adapters
63
+ ```python
64
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
65
+ from peft import PeftModel, PeftConfig
66
+ import torch
67
+
68
+ # Configure 4-bit quantization
69
+ bnb_config = BitsAndBytesConfig(
70
+ load_in_4bit=True,
71
+ bnb_4bit_use_double_quant=True,
72
+ bnb_4bit_quant_type="nf4",
73
+ bnb_4bit_compute_dtype=torch.bfloat16
74
+ )
75
+
76
+ # Load the base model
77
+ base_model_name = "meta-llama/Llama-3.2-3B-Instruct"
78
+ model = AutoModelForCausalLM.from_pretrained(
79
+ base_model_name,
80
+ quantization_config=bnb_config,
81
+ torch_dtype="auto",
82
+ device_map="auto"
83
+ )
84
+
85
+ # Load the QLoRA adapters
86
+ adapter_model_name = "Geraldine/FineLlama-3.2-3B-Instruct-ead-Adapters"
87
+ model = PeftModel.from_pretrained(model, adapter_model_name)
88
+
89
+ # Load the tokenizer
90
+ tokenizer = AutoTokenizer.from_pretrained(base_model_name)
91
+ ```
92
+
93
+ ### Example Usage
94
+ ```python
95
+ messages = [
96
+ {"role": "system", "content": "You are an expert in EAD/XML generation for archival records metadata."},
97
+ {"role": "user", "content": "Generate a minimal and compliant <eadheader> template with all required EAD/XML tags"},
98
+ ]
99
+
100
+ inputs = tokenizer.apply_chat_template(
101
+ messages,
102
+ return_tensors="pt",
103
+ add_generation_prompt=True
104
+ ).to(model.device)
105
+
106
+ outputs = model.generate(inputs, max_new_tokens=4096, use_cache=True)
107
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
108
+ ```
109
 
110
+ ---
111
 
112
+ ## Limitations
113
+ - The adapters are specifically trained for EAD/XML generation and may not generalize well to other tasks.
114
+ - Performance depends on the quality and specificity of the input prompts.
115
+ - The maximum sequence length is limited to 4096 tokens.
116
 
117
+ ---
118
 
119
+ ## Citation
120
+ If you use these adapters in your work, please cite the base model and this repository:
121
 
122
+ ```bibtex
123
+ @misc{ead-llama-adapters,
124
+ author = {Géraldine Geoffroy},
125
+ title = {FineLlama-3.2-3B-Instruct-ead QLoRA Adapters},
126
+ year = {2024},
127
+ publisher = {HuggingFace},
128
+ journal = {HuggingFace Repository},
129
+ howpublished = {\url{https://huggingface.co/Geraldine/qlora-FineLlama-3.2-3B-Instruct-ead}}
130
+ }
131
+ ```
132
 
133
+ ---
134
 
135
+ ## License
136
 
137
+ The adapters are subject to the same license as the base [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) model. Please refer to Meta's LLaMa license for usage terms and conditions.