File size: 2,141 Bytes
4406b91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: apache-2.0
base_model: google/mt5-small
tags:
- summarization
- generated_from_trainer
datasets:
- scientific_papers
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-amazon-en-es
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: scientific_papers
type: scientific_papers
config: pubmed
split: validation
args: pubmed
metrics:
- name: Rouge1
type: rouge
value: 7.0145
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-finetuned-amazon-en-es
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the scientific_papers dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5188
- Rouge1: 7.0145
- Rouge2: 1.8214
- Rougel: 5.8355
- Rougelsum: 6.2468
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 17.5935 | 1.0 | 50 | 8.3763 | 1.0909 | 0.7547 | 1.0909 | 1.0909 |
| 10.9464 | 2.0 | 100 | 4.7599 | 3.5415 | 0.0 | 2.927 | 2.547 |
| 6.5498 | 3.0 | 150 | 3.6772 | 6.7136 | 1.8214 | 5.2193 | 5.925 |
| 6.0161 | 4.0 | 200 | 3.5188 | 7.0145 | 1.8214 | 5.8355 | 6.2468 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.1+cpu
- Datasets 2.17.0
- Tokenizers 0.15.2
|