--- language: - fi tags: - multi-task --- The best multi-task wav2vec 2.0 model for Finnish from [__Getman, Y., Al-Ghezi, R., Grósz, T., Kurimo, M. (2023) Multi-task wav2vec2 Serving as a Pronunciation Training System for Children__](https://www.isca-speech.org/archive/slate_2023/getman23_slate.html) that performs ASR and speech pronunciation rating task simultaneously. ## Usage You must first install [aalto-speech/multitask-wav2vec2](https://github.com/aalto-speech/multitask-wav2vec2) to use this model. The model can then be used directly as follows: ```python import torch import librosa import datasets from transformers import Wav2Vec2ForMultiTask, Wav2Vec2Processor def map_to_array(batch): speech, _ = librosa.load(batch["file"], sr=16000, mono=True) batch["speech"] = speech return batch def map_to_pred_multitask(batch): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') input_values = processor(batch["speech"], sampling_rate=16000, return_tensors="pt", padding="longest").input_values with torch.no_grad(): logits = model(input_values.to(device)).logits predicted_ids_ctc = torch.argmax(logits[1], dim=-1) transcription = processor.batch_decode(predicted_ids_ctc) batch["transcription"] = transcription predicted_ids = torch.argmax(logits[0], dim=-1) batch['predictions'] = predicted_ids return batch processor = Wav2Vec2Processor.from_pretrained(MODEL_PATH) model = Wav2Vec2ForMultiTask.from_pretrained(MODEL_PATH) test_dataset = test_dataset.map(map_to_array) result = test_dataset.map(map_to_pred_multitask) ``` ## Citation If you use our models or training scripts, please cite our article as: ```bibtex @inproceedings{getman23_slate, author={Yaroslav Getman and Ragheb Al-Ghezi and Tamas Grosz and Mikko Kurimo}, title={{Multi-task wav2vec2 Serving as a Pronunciation Training System for Children}}, year=2023, booktitle={Proc. 9th Workshop on Speech and Language Technology in Education (SLaTE)}, pages={36--40}, doi={10.21437/SLaTE.2023-8} } ```