|
from typing import Dict, Any, List |
|
import torch |
|
import logging |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
try: |
|
logger.info(f"Loading model and tokenizer from path: {path}") |
|
self.model = AutoModelForSeq2SeqLM.from_pretrained(f"{path}").to(self.device) |
|
self.tokenizer = AutoTokenizer.from_pretrained(f"{path}") |
|
except Exception as e: |
|
logger.error(f"Error loading model or tokenizer from path {path}: {e}") |
|
|
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
if self.model is None or self.tokenizer is None: |
|
error_message = "Model or tokenizer not properly initialized" |
|
logger.error(error_message) |
|
return [{"error": error_message}] |
|
inputs = data.get("inputs") |
|
if not inputs: |
|
return [{"error": "No inputs provided"}] |
|
|
|
tokenized_input = self.tokenizer(inputs, return_tensors="pt") |
|
input_ids,attention_masks = tokenized_input["input_ids"].to(self.device), tokenized_input["attention_mask"].to(self.device) |
|
|
|
summary_ids = self.model.generate(input_ids=input_ids, attention_mask=attention_masks,) |
|
|
|
summary_text = self.tokenizer.decode(summary_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) |
|
print('good') |
|
return [{"summary": summary_text}] |