|
[paths] |
|
train = "corpus/train.spacy" |
|
dev = "corpus/dev.spacy" |
|
raw = null |
|
init_tok2vec = null |
|
vectors = null |
|
|
|
[system] |
|
seed = 0 |
|
gpu_allocator = null |
|
|
|
[nlp] |
|
lang = "en" |
|
pipeline = ["transformer","textcat"] |
|
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"} |
|
disabled = [] |
|
before_creation = null |
|
after_creation = null |
|
after_pipeline_creation = null |
|
batch_size = 1000 |
|
|
|
[components] |
|
|
|
[components.textcat] |
|
factory = "textcat_multilabel" |
|
threshold = 0.5 |
|
|
|
[components.textcat.model] |
|
@architectures = "spacy.TextCatCNN.v1" |
|
exclusive_classes = false |
|
nO = null |
|
|
|
[components.textcat.model.tok2vec] |
|
@architectures = "spacy-transformers.TransformerListener.v1" |
|
grad_factor = 1.0 |
|
pooling = {"@layers":"reduce_mean.v1"} |
|
upstream = "*" |
|
|
|
[components.transformer] |
|
factory = "transformer" |
|
max_batch_items = 4096 |
|
set_extra_annotations = {"@annotation_setters":"spacy-transformers.null_annotation_setter.v1"} |
|
|
|
[components.transformer.model] |
|
@architectures = "spacy-transformers.TransformerModel.v1" |
|
name = "xlm-roberta-base" |
|
|
|
[components.transformer.model.get_spans] |
|
@span_getters = "spacy-transformers.strided_spans.v1" |
|
window = 128 |
|
stride = 96 |
|
|
|
[components.transformer.model.tokenizer_config] |
|
use_fast = true |
|
|
|
[corpora] |
|
|
|
[corpora.dev] |
|
@readers = "spacy.Corpus.v1" |
|
path = ${paths.dev} |
|
gold_preproc = ${corpora.train.gold_preproc} |
|
max_length = ${corpora.train.max_length} |
|
limit = 0 |
|
augmenter = null |
|
|
|
[corpora.train] |
|
@readers = "spacy.Corpus.v1" |
|
path = ${paths:train} |
|
gold_preproc = false |
|
max_length = 500 |
|
limit = 0 |
|
augmenter = null |
|
|
|
[training] |
|
train_corpus = "corpora.train" |
|
dev_corpus = "corpora.dev" |
|
seed = ${system.seed} |
|
gpu_allocator = ${system.gpu_allocator} |
|
patience = 5000 |
|
eval_frequency = 400 |
|
dropout = 0.1 |
|
max_epochs = 10 |
|
max_steps = 0 |
|
accumulate_gradient = 3 |
|
frozen_components = [] |
|
before_to_disk = null |
|
|
|
[training.batcher] |
|
@batchers = "spacy.batch_by_sequence.v1" |
|
size = 128 |
|
get_length = null |
|
|
|
[training.logger] |
|
@loggers = "spacy.ConsoleLogger.v1" |
|
progress_bar = false |
|
|
|
[training.optimizer] |
|
@optimizers = "Adam.v1" |
|
beta1 = 0.9 |
|
beta2 = 0.999 |
|
eps = 0.00000001 |
|
L2_is_weight_decay = true |
|
L2 = 0.01 |
|
grad_clip = 1.0 |
|
use_averages = false |
|
|
|
[training.optimizer.learn_rate] |
|
@schedules = "warmup_linear.v1" |
|
warmup_steps = 250 |
|
total_steps = 20000 |
|
initial_rate = 0.00005 |
|
|
|
[training.score_weights] |
|
cats_score = 0.5 |
|
cats_score_desc = null |
|
cats_micro_p = null |
|
cats_micro_r = null |
|
cats_micro_f = null |
|
cats_macro_p = null |
|
cats_macro_r = null |
|
cats_macro_f = 0.5 |
|
cats_macro_auc = null |
|
cats_f_per_type = null |
|
cats_macro_auc_per_type = null |
|
|
|
[pretraining] |
|
|
|
[initialize] |
|
vectors = ${paths.vectors} |
|
init_tok2vec = ${paths.init_tok2vec} |
|
vocab_data = null |
|
lookups = null |
|
before_init = null |
|
after_init = null |
|
|
|
[initialize.components] |
|
|
|
[initialize.tokenizer] |