File size: 2,782 Bytes
ce6ae31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c71b1b
 
ce6ae31
 
 
 
 
 
 
49101a0
ce6ae31
 
 
 
 
 
a7f8a0e
ce6ae31
 
 
cb2fd61
ce6ae31
 
 
cb2fd61
ce6ae31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5531db9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: giecom-vit-model-clasification-waste
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9974251689732861
datasets:
- viola77data/recycling-dataset
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# giecom-vit-model-clasification-waste

This model is a fine-tuned version performed by Miguel Calderon of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0066
- Accuracy: 0.9974

## Model description

El modelo giecom-vit-model-clasification-waste es una versión ajustada (finetuned) del modelo google/vit-base-patch16-224 utilizando el conjunto de datos viola77data/recycling-dataset. Este modelo está diseñado específicamente para la clasificación de imágenes de residuos reciclables, utilizando la arquitectura de Transformers. Ha demostrado ser altamente eficaz, alcanzando una precisión del 99.74% y una pérdida de 0.0066 en el conjunto de evaluación.

## Intended uses & limitations

El modelo ha sido entrenado específicamente para imágenes de residuos, por lo que su eficacia podría reducirse al utilizarlo en contextos o conjuntos de datos diferentes.

## Training and evaluation data

El modelo ha sido entrenado con hiperparámetros específicos, incluyendo una tasa de aprendizaje de 0.0002 y un tamaño de lote de 8, utilizando el optimizador Adam. Se entrenó durante 4 épocas, mostrando una mejora constante en la precisión y una reducción de la pérdida en el conjunto de validación.

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7872        | 1.29  | 500  | 0.3043          | 0.9047   |
| 0.2279        | 2.57  | 1000 | 0.0463          | 0.9871   |
| 0.0406        | 3.86  | 1500 | 0.0066          | 0.9974   |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1