File size: 2,782 Bytes
ce6ae31 6c71b1b ce6ae31 49101a0 ce6ae31 a7f8a0e ce6ae31 cb2fd61 ce6ae31 cb2fd61 ce6ae31 5531db9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: giecom-vit-model-clasification-waste
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9974251689732861
datasets:
- viola77data/recycling-dataset
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# giecom-vit-model-clasification-waste
This model is a fine-tuned version performed by Miguel Calderon of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0066
- Accuracy: 0.9974
## Model description
El modelo giecom-vit-model-clasification-waste es una versión ajustada (finetuned) del modelo google/vit-base-patch16-224 utilizando el conjunto de datos viola77data/recycling-dataset. Este modelo está diseñado específicamente para la clasificación de imágenes de residuos reciclables, utilizando la arquitectura de Transformers. Ha demostrado ser altamente eficaz, alcanzando una precisión del 99.74% y una pérdida de 0.0066 en el conjunto de evaluación.
## Intended uses & limitations
El modelo ha sido entrenado específicamente para imágenes de residuos, por lo que su eficacia podría reducirse al utilizarlo en contextos o conjuntos de datos diferentes.
## Training and evaluation data
El modelo ha sido entrenado con hiperparámetros específicos, incluyendo una tasa de aprendizaje de 0.0002 y un tamaño de lote de 8, utilizando el optimizador Adam. Se entrenó durante 4 épocas, mostrando una mejora constante en la precisión y una reducción de la pérdida en el conjunto de validación.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7872 | 1.29 | 500 | 0.3043 | 0.9047 |
| 0.2279 | 2.57 | 1000 | 0.0463 | 0.9871 |
| 0.0406 | 3.86 | 1500 | 0.0066 | 0.9974 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1 |