--- tags: - merge - mergekit - lazymergekit - automerger/NeuralsirkrishnaExperiment26-7B - Gille/StrangeMerges_21-7B-slerp - Gille/StrangeMerges_34-7B-slerp base_model: - automerger/NeuralsirkrishnaExperiment26-7B - Gille/StrangeMerges_21-7B-slerp - Gille/StrangeMerges_34-7B-slerp --- # StrangeMerges_38-7B-dare_ties StrangeMerges_38-7B-dare_ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [automerger/NeuralsirkrishnaExperiment26-7B](https://huggingface.co/automerger/NeuralsirkrishnaExperiment26-7B) * [Gille/StrangeMerges_21-7B-slerp](https://huggingface.co/Gille/StrangeMerges_21-7B-slerp) * [Gille/StrangeMerges_34-7B-slerp](https://huggingface.co/Gille/StrangeMerges_34-7B-slerp) ## 🧩 Configuration ```yaml models: - model: Gille/StrangeMerges_37-7B-dare_ties # No parameters necessary for base model - model: automerger/NeuralsirkrishnaExperiment26-7B parameters: density: 0.53 weight: 0.4 - model: Gille/StrangeMerges_21-7B-slerp parameters: density: 0.53 weight: 0.3 - model: Gille/StrangeMerges_34-7B-slerp parameters: density: 0.53 weight: 0.3 merge_method: dare_ties base_model: Gille/StrangeMerges_37-7B-dare_ties parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Gille/StrangeMerges_38-7B-dare_ties" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```