--- tags: - merge - mergekit - lazymergekit - Gille/StrangeMerges_46-7B-dare_ties - AurelPx/Percival_01-7b-slerp - kaist-ai/mistral-orpo-beta base_model: - Gille/StrangeMerges_46-7B-dare_ties - AurelPx/Percival_01-7b-slerp - kaist-ai/mistral-orpo-beta --- # StrangeMerges_47-7B-dare_ties StrangeMerges_47-7B-dare_ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Gille/StrangeMerges_46-7B-dare_ties](https://huggingface.co/Gille/StrangeMerges_46-7B-dare_ties) * [AurelPx/Percival_01-7b-slerp](https://huggingface.co/AurelPx/Percival_01-7b-slerp) * [kaist-ai/mistral-orpo-beta](https://huggingface.co/kaist-ai/mistral-orpo-beta) ## 🧩 Configuration ```yaml models: - model: Gille/StrangeMerges_46-7B-dare_ties parameters: weight: 0.4 density: 0.53 - model: AurelPx/Percival_01-7b-slerp parameters: weight: 0.4 density: 0.53 - model: kaist-ai/mistral-orpo-beta parameters: weight: 0.2 density: 0.53 base_model: kettleguts/zephyr-7b-beta_sparse05 merge_method: dare_ties dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Gille/StrangeMerges_47-7B-dare_ties" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```