File size: 5,914 Bytes
485c2ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import math
from dataclasses import dataclass
from enum import Enum
from typing import NamedTuple, Tuple

import torch
from .DiffAE_support_choices import *
from .DiffAE_support_config_base import BaseConfig
from torch import nn
from torch.nn import init

from .DiffAE_model_blocks import *
from .DiffAE_model_nn import timestep_embedding
from .DiffAE_model_unet import *


class LatentNetType(Enum):
    none = 'none'
    # injecting inputs into the hidden layers
    skip = 'skip'


class LatentNetReturn(NamedTuple):
    pred: torch.Tensor = None


@dataclass
class MLPSkipNetConfig(BaseConfig):
    """
    default MLP for the latent DPM in the paper!
    """
    num_channels: int
    skip_layers: Tuple[int]
    num_hid_channels: int
    num_layers: int
    num_time_emb_channels: int = 64
    activation: Activation = Activation.silu
    use_norm: bool = True
    condition_bias: float = 1
    dropout: float = 0
    last_act: Activation = Activation.none
    num_time_layers: int = 2
    time_last_act: bool = False

    def make_model(self):
        return MLPSkipNet(self)


class MLPSkipNet(nn.Module):
    """
    concat x to hidden layers

    default MLP for the latent DPM in the paper!
    """
    def __init__(self, conf: MLPSkipNetConfig):
        super().__init__()
        self.conf = conf

        layers = []
        for i in range(conf.num_time_layers):
            if i == 0:
                a = conf.num_time_emb_channels
                b = conf.num_channels
            else:
                a = conf.num_channels
                b = conf.num_channels
            layers.append(nn.Linear(a, b))
            if i < conf.num_time_layers - 1 or conf.time_last_act:
                layers.append(conf.activation.get_act())
        self.time_embed = nn.Sequential(*layers)

        self.layers = nn.ModuleList([])
        for i in range(conf.num_layers):
            if i == 0:
                act = conf.activation
                norm = conf.use_norm
                cond = True
                a, b = conf.num_channels, conf.num_hid_channels
                dropout = conf.dropout
            elif i == conf.num_layers - 1:
                act = Activation.none
                norm = False
                cond = False
                a, b = conf.num_hid_channels, conf.num_channels
                dropout = 0
            else:
                act = conf.activation
                norm = conf.use_norm
                cond = True
                a, b = conf.num_hid_channels, conf.num_hid_channels
                dropout = conf.dropout

            if i in conf.skip_layers:
                a += conf.num_channels

            self.layers.append(
                MLPLNAct(
                    a,
                    b,
                    norm=norm,
                    activation=act,
                    cond_channels=conf.num_channels,
                    use_cond=cond,
                    condition_bias=conf.condition_bias,
                    dropout=dropout,
                ))
        self.last_act = conf.last_act.get_act()

    def forward(self, x, t, **kwargs):
        t = timestep_embedding(t, self.conf.num_time_emb_channels)
        cond = self.time_embed(t)
        h = x
        for i in range(len(self.layers)):
            if i in self.conf.skip_layers:
                # injecting input into the hidden layers
                h = torch.cat([h, x], dim=1)
            h = self.layers[i].forward(x=h, cond=cond)
        h = self.last_act(h)
        return LatentNetReturn(h)


class MLPLNAct(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        norm: bool,
        use_cond: bool,
        activation: Activation,
        cond_channels: int,
        condition_bias: float = 0,
        dropout: float = 0,
    ):
        super().__init__()
        self.activation = activation
        self.condition_bias = condition_bias
        self.use_cond = use_cond

        self.linear = nn.Linear(in_channels, out_channels)
        self.act = activation.get_act()
        if self.use_cond:
            self.linear_emb = nn.Linear(cond_channels, out_channels)
            self.cond_layers = nn.Sequential(self.act, self.linear_emb)
        if norm:
            self.norm = nn.LayerNorm(out_channels)
        else:
            self.norm = nn.Identity()

        if dropout > 0:
            self.dropout = nn.Dropout(p=dropout)
        else:
            self.dropout = nn.Identity()

        self.init_weights()

    def init_weights(self):
        for module in self.modules():
            if isinstance(module, nn.Linear):
                if self.activation == Activation.relu:
                    init.kaiming_normal_(module.weight,
                                         a=0,
                                         nonlinearity='relu')
                elif self.activation == Activation.lrelu:
                    init.kaiming_normal_(module.weight,
                                         a=0.2,
                                         nonlinearity='leaky_relu')
                elif self.activation == Activation.silu:
                    init.kaiming_normal_(module.weight,
                                         a=0,
                                         nonlinearity='relu')
                else:
                    # leave it as default
                    pass

    def forward(self, x, cond=None):
        x = self.linear(x)
        if self.use_cond:
            # (n, c) or (n, c * 2)
            cond = self.cond_layers(cond)
            cond = (cond, None)

            # scale shift first
            x = x * (self.condition_bias + cond[0])
            if cond[1] is not None:
                x = x + cond[1]
            # then norm
            x = self.norm(x)
        else:
            # no condition
            x = self.norm(x)
        x = self.act(x)
        x = self.dropout(x)
        return x