|
import math |
|
from dataclasses import dataclass |
|
from numbers import Number |
|
from typing import NamedTuple, Tuple, Union |
|
|
|
import numpy as np |
|
import torch as th |
|
from torch import nn |
|
import torch.nn.functional as F |
|
from .DiffAE_support_choices import * |
|
from .DiffAE_support_config_base import BaseConfig |
|
from .DiffAE_model_blocks import * |
|
|
|
from .DiffAE_model_nn import (conv_nd, linear, normalization, timestep_embedding, |
|
torch_checkpoint, zero_module) |
|
|
|
|
|
@dataclass |
|
class BeatGANsUNetConfig(BaseConfig): |
|
image_size: int = 64 |
|
in_channels: int = 3 |
|
|
|
model_channels: int = 64 |
|
|
|
|
|
|
|
out_channels: int = 3 |
|
|
|
|
|
|
|
num_res_blocks: int = 2 |
|
|
|
|
|
num_input_res_blocks: int = None |
|
|
|
embed_channels: int = 512 |
|
|
|
|
|
|
|
|
|
attention_resolutions: Tuple[int] = (16, ) |
|
|
|
time_embed_channels: int = None |
|
|
|
dropout: float = 0.1 |
|
channel_mult: Tuple[int] = (1, 2, 4, 8) |
|
input_channel_mult: Tuple[int] = None |
|
conv_resample: bool = True |
|
group_norm_limit: int = 32 |
|
|
|
dims: int = 2 |
|
|
|
num_classes: int = None |
|
use_checkpoint: bool = False |
|
|
|
num_heads: int = 1 |
|
|
|
num_head_channels: int = -1 |
|
|
|
num_heads_upsample: int = -1 |
|
|
|
|
|
resblock_updown: bool = True |
|
|
|
use_new_attention_order: bool = False |
|
resnet_two_cond: bool = False |
|
resnet_cond_channels: int = None |
|
|
|
|
|
resnet_use_zero_module: bool = True |
|
|
|
attn_checkpoint: bool = False |
|
|
|
def make_model(self): |
|
return BeatGANsUNetModel(self) |
|
|
|
|
|
class BeatGANsUNetModel(nn.Module): |
|
def __init__(self, conf: BeatGANsUNetConfig): |
|
super().__init__() |
|
self.conf = conf |
|
|
|
if conf.num_heads_upsample == -1: |
|
self.num_heads_upsample = conf.num_heads |
|
|
|
self.dtype = th.float32 |
|
|
|
self.time_emb_channels = conf.time_embed_channels or conf.model_channels |
|
self.time_embed = nn.Sequential( |
|
linear(self.time_emb_channels, conf.embed_channels), |
|
nn.SiLU(), |
|
linear(conf.embed_channels, conf.embed_channels), |
|
) |
|
|
|
if conf.num_classes is not None: |
|
self.label_emb = nn.Embedding(conf.num_classes, |
|
conf.embed_channels) |
|
|
|
ch = input_ch = int(conf.channel_mult[0] * conf.model_channels) |
|
self.input_blocks = nn.ModuleList([ |
|
TimestepEmbedSequential( |
|
conv_nd(conf.dims, conf.in_channels, ch, 3, padding=1)) |
|
]) |
|
|
|
kwargs = dict( |
|
use_condition=True, |
|
two_cond=conf.resnet_two_cond, |
|
use_zero_module=conf.resnet_use_zero_module, |
|
|
|
cond_emb_channels=conf.resnet_cond_channels, |
|
) |
|
|
|
self._feature_size = ch |
|
|
|
|
|
input_block_chans = [[] for _ in range(len(conf.channel_mult))] |
|
input_block_chans[0].append(ch) |
|
|
|
|
|
self.input_num_blocks = [0 for _ in range(len(conf.channel_mult))] |
|
self.input_num_blocks[0] = 1 |
|
self.output_num_blocks = [0 for _ in range(len(conf.channel_mult))] |
|
|
|
ds = 1 |
|
resolution = conf.image_size |
|
for level, mult in enumerate(conf.input_channel_mult |
|
or conf.channel_mult): |
|
for _ in range(conf.num_input_res_blocks or conf.num_res_blocks): |
|
layers = [ |
|
ResBlockConfig( |
|
ch, |
|
conf.embed_channels, |
|
conf.dropout, |
|
out_channels=int(mult * conf.model_channels), |
|
group_norm_limit=conf.group_norm_limit, |
|
dims=conf.dims, |
|
use_checkpoint=conf.use_checkpoint, |
|
**kwargs, |
|
).make_model() |
|
] |
|
ch = int(mult * conf.model_channels) |
|
if resolution in conf.attention_resolutions: |
|
layers.append( |
|
AttentionBlock( |
|
ch, |
|
use_checkpoint=conf.use_checkpoint |
|
or conf.attn_checkpoint, |
|
num_heads=conf.num_heads, |
|
num_head_channels=conf.num_head_channels, |
|
group_norm_limit=conf.group_norm_limit, |
|
use_new_attention_order=conf. |
|
use_new_attention_order, |
|
)) |
|
self.input_blocks.append(TimestepEmbedSequential(*layers)) |
|
self._feature_size += ch |
|
|
|
input_block_chans[level].append(ch) |
|
self.input_num_blocks[level] += 1 |
|
|
|
if level != len(conf.channel_mult) - 1: |
|
resolution //= 2 |
|
out_ch = ch |
|
self.input_blocks.append( |
|
TimestepEmbedSequential( |
|
ResBlockConfig( |
|
ch, |
|
conf.embed_channels, |
|
conf.dropout, |
|
out_channels=out_ch, |
|
group_norm_limit=conf.group_norm_limit, |
|
dims=conf.dims, |
|
use_checkpoint=conf.use_checkpoint, |
|
down=True, |
|
**kwargs, |
|
).make_model() if conf. |
|
resblock_updown else Downsample(ch, |
|
conf.conv_resample, |
|
dims=conf.dims, |
|
out_channels=out_ch))) |
|
ch = out_ch |
|
|
|
input_block_chans[level + 1].append(ch) |
|
self.input_num_blocks[level + 1] += 1 |
|
ds *= 2 |
|
self._feature_size += ch |
|
|
|
self.middle_block = TimestepEmbedSequential( |
|
ResBlockConfig( |
|
ch, |
|
conf.embed_channels, |
|
conf.dropout, |
|
group_norm_limit=conf.group_norm_limit, |
|
dims=conf.dims, |
|
use_checkpoint=conf.use_checkpoint, |
|
**kwargs, |
|
).make_model(), |
|
AttentionBlock( |
|
ch, |
|
use_checkpoint=conf.use_checkpoint or conf.attn_checkpoint, |
|
num_heads=conf.num_heads, |
|
num_head_channels=conf.num_head_channels, |
|
group_norm_limit=conf.group_norm_limit, |
|
use_new_attention_order=conf.use_new_attention_order, |
|
), |
|
ResBlockConfig( |
|
ch, |
|
conf.embed_channels, |
|
conf.dropout, |
|
group_norm_limit=conf.group_norm_limit, |
|
dims=conf.dims, |
|
use_checkpoint=conf.use_checkpoint, |
|
**kwargs, |
|
).make_model(), |
|
) |
|
self._feature_size += ch |
|
|
|
self.output_blocks = nn.ModuleList([]) |
|
for level, mult in list(enumerate(conf.channel_mult))[::-1]: |
|
for i in range(conf.num_res_blocks + 1): |
|
|
|
|
|
try: |
|
ich = input_block_chans[level].pop() |
|
except IndexError: |
|
|
|
|
|
ich = 0 |
|
|
|
layers = [ |
|
ResBlockConfig( |
|
|
|
channels=ch + ich, |
|
emb_channels=conf.embed_channels, |
|
dropout=conf.dropout, |
|
out_channels=int(conf.model_channels * mult), |
|
group_norm_limit=conf.group_norm_limit, |
|
dims=conf.dims, |
|
use_checkpoint=conf.use_checkpoint, |
|
|
|
has_lateral=True if ich > 0 else False, |
|
lateral_channels=None, |
|
**kwargs, |
|
).make_model() |
|
] |
|
ch = int(conf.model_channels * mult) |
|
if resolution in conf.attention_resolutions: |
|
layers.append( |
|
AttentionBlock( |
|
ch, |
|
use_checkpoint=conf.use_checkpoint |
|
or conf.attn_checkpoint, |
|
num_heads=self.num_heads_upsample, |
|
num_head_channels=conf.num_head_channels, |
|
group_norm_limit=conf.group_norm_limit, |
|
use_new_attention_order=conf. |
|
use_new_attention_order, |
|
)) |
|
if level and i == conf.num_res_blocks: |
|
resolution *= 2 |
|
out_ch = ch |
|
layers.append( |
|
ResBlockConfig( |
|
ch, |
|
conf.embed_channels, |
|
conf.dropout, |
|
out_channels=out_ch, |
|
group_norm_limit=conf.group_norm_limit, |
|
dims=conf.dims, |
|
use_checkpoint=conf.use_checkpoint, |
|
up=True, |
|
**kwargs, |
|
).make_model() if ( |
|
conf.resblock_updown |
|
) else Upsample(ch, |
|
conf.conv_resample, |
|
dims=conf.dims, |
|
out_channels=out_ch)) |
|
ds //= 2 |
|
self.output_blocks.append(TimestepEmbedSequential(*layers)) |
|
self.output_num_blocks[level] += 1 |
|
self._feature_size += ch |
|
|
|
|
|
|
|
|
|
|
|
if conf.resnet_use_zero_module: |
|
self.out = nn.Sequential( |
|
normalization(ch, limit=conf.group_norm_limit if "group_norm_limit" in conf.__dict__ else 32), |
|
nn.SiLU(), |
|
zero_module( |
|
conv_nd(conf.dims, |
|
input_ch, |
|
conf.out_channels, |
|
3, |
|
padding=1)), |
|
) |
|
else: |
|
self.out = nn.Sequential( |
|
normalization(ch, limit=conf.group_norm_limit if "group_norm_limit" in conf.__dict__ else 32), |
|
nn.SiLU(), |
|
conv_nd(conf.dims, input_ch, conf.out_channels, 3, padding=1), |
|
) |
|
|
|
def forward(self, x, t, y=None, **kwargs): |
|
""" |
|
Apply the model to an input batch. |
|
|
|
:param x: an [N x C x ...] Tensor of inputs. |
|
:param timesteps: a 1-D batch of timesteps. |
|
:param y: an [N] Tensor of labels, if class-conditional. |
|
:return: an [N x C x ...] Tensor of outputs. |
|
""" |
|
assert (y is not None) == ( |
|
self.conf.num_classes is not None |
|
), "must specify y if and only if the model is class-conditional" |
|
|
|
|
|
hs = [[] for _ in range(len(self.conf.channel_mult))] |
|
emb = self.time_embed(timestep_embedding(t, self.time_emb_channels)) |
|
|
|
if self.conf.num_classes is not None: |
|
raise NotImplementedError() |
|
|
|
|
|
|
|
|
|
h = x.type(self.dtype) |
|
k = 0 |
|
for i in range(len(self.input_num_blocks)): |
|
for j in range(self.input_num_blocks[i]): |
|
h = self.input_blocks[k](h, emb=emb) |
|
|
|
hs[i].append(h) |
|
k += 1 |
|
assert k == len(self.input_blocks) |
|
|
|
h = self.middle_block(h, emb=emb) |
|
k = 0 |
|
for i in range(len(self.output_num_blocks)): |
|
for j in range(self.output_num_blocks[i]): |
|
|
|
|
|
try: |
|
lateral = hs[-i - 1].pop() |
|
|
|
except IndexError: |
|
lateral = None |
|
|
|
h = self.output_blocks[k](h, emb=emb, lateral=lateral) |
|
k += 1 |
|
|
|
h = h.type(x.dtype) |
|
pred = self.out(h) |
|
return Return(pred=pred) |
|
|
|
|
|
class Return(NamedTuple): |
|
pred: th.Tensor |
|
|
|
|
|
@dataclass |
|
class BeatGANsEncoderConfig(BaseConfig): |
|
image_size: int |
|
in_channels: int |
|
model_channels: int |
|
out_hid_channels: int |
|
out_channels: int |
|
num_res_blocks: int |
|
attention_resolutions: Tuple[int] |
|
dropout: float = 0 |
|
channel_mult: Tuple[int] = (1, 2, 4, 8) |
|
use_time_condition: bool = True |
|
conv_resample: bool = True |
|
group_norm_limit: int = 32 |
|
dims: int = 2 |
|
use_checkpoint: bool = False |
|
num_heads: int = 1 |
|
num_head_channels: int = -1 |
|
resblock_updown: bool = False |
|
use_new_attention_order: bool = False |
|
pool: str = 'adaptivenonzero' |
|
|
|
def make_model(self): |
|
return BeatGANsEncoderModel(self) |
|
|
|
|
|
class BeatGANsEncoderModel(nn.Module): |
|
""" |
|
The half UNet model with attention and timestep embedding. |
|
|
|
For usage, see UNet. |
|
""" |
|
def __init__(self, conf: BeatGANsEncoderConfig): |
|
super().__init__() |
|
self.conf = conf |
|
self.dtype = th.float32 |
|
|
|
if conf.use_time_condition: |
|
time_embed_dim = conf.model_channels * 4 |
|
self.time_embed = nn.Sequential( |
|
linear(conf.model_channels, time_embed_dim), |
|
nn.SiLU(), |
|
linear(time_embed_dim, time_embed_dim), |
|
) |
|
else: |
|
time_embed_dim = None |
|
|
|
ch = int(conf.channel_mult[0] * conf.model_channels) |
|
self.input_blocks = nn.ModuleList([ |
|
TimestepEmbedSequential( |
|
conv_nd(conf.dims, conf.in_channels, ch, 3, padding=1)) |
|
]) |
|
self._feature_size = ch |
|
input_block_chans = [ch] |
|
ds = 1 |
|
resolution = conf.image_size |
|
for level, mult in enumerate(conf.channel_mult): |
|
for _ in range(conf.num_res_blocks): |
|
layers = [ |
|
ResBlockConfig( |
|
ch, |
|
time_embed_dim, |
|
conf.dropout, |
|
out_channels=int(mult * conf.model_channels), |
|
group_norm_limit=conf.group_norm_limit, |
|
dims=conf.dims, |
|
use_condition=conf.use_time_condition, |
|
use_checkpoint=conf.use_checkpoint, |
|
).make_model() |
|
] |
|
ch = int(mult * conf.model_channels) |
|
if resolution in conf.attention_resolutions: |
|
layers.append( |
|
AttentionBlock( |
|
ch, |
|
use_checkpoint=conf.use_checkpoint, |
|
num_heads=conf.num_heads, |
|
num_head_channels=conf.num_head_channels, |
|
group_norm_limit=conf.group_norm_limit, |
|
use_new_attention_order=conf. |
|
use_new_attention_order, |
|
)) |
|
self.input_blocks.append(TimestepEmbedSequential(*layers)) |
|
self._feature_size += ch |
|
input_block_chans.append(ch) |
|
if level != len(conf.channel_mult) - 1: |
|
resolution //= 2 |
|
out_ch = ch |
|
self.input_blocks.append( |
|
TimestepEmbedSequential( |
|
ResBlockConfig( |
|
ch, |
|
time_embed_dim, |
|
conf.dropout, |
|
out_channels=out_ch, |
|
group_norm_limit=conf.group_norm_limit, |
|
dims=conf.dims, |
|
use_condition=conf.use_time_condition, |
|
use_checkpoint=conf.use_checkpoint, |
|
down=True, |
|
).make_model() if ( |
|
conf.resblock_updown |
|
) else Downsample(ch, |
|
conf.conv_resample, |
|
dims=conf.dims, |
|
out_channels=out_ch))) |
|
ch = out_ch |
|
input_block_chans.append(ch) |
|
ds *= 2 |
|
self._feature_size += ch |
|
|
|
self.middle_block = TimestepEmbedSequential( |
|
ResBlockConfig( |
|
ch, |
|
time_embed_dim, |
|
conf.dropout, |
|
group_norm_limit=conf.group_norm_limit, |
|
dims=conf.dims, |
|
use_condition=conf.use_time_condition, |
|
use_checkpoint=conf.use_checkpoint, |
|
).make_model(), |
|
AttentionBlock( |
|
ch, |
|
use_checkpoint=conf.use_checkpoint, |
|
num_heads=conf.num_heads, |
|
num_head_channels=conf.num_head_channels, |
|
group_norm_limit=conf.group_norm_limit, |
|
use_new_attention_order=conf.use_new_attention_order, |
|
), |
|
ResBlockConfig( |
|
ch, |
|
time_embed_dim, |
|
conf.dropout, |
|
group_norm_limit=conf.group_norm_limit, |
|
dims=conf.dims, |
|
use_condition=conf.use_time_condition, |
|
use_checkpoint=conf.use_checkpoint, |
|
).make_model(), |
|
) |
|
self._feature_size += ch |
|
if conf.pool == "adaptivenonzero": |
|
self.out = nn.Sequential( |
|
normalization(ch, limit=conf.group_norm_limit if "group_norm_limit" in conf.__dict__ else 32), |
|
nn.SiLU(), |
|
nn.AdaptiveAvgPool2d((1, 1)) if conf.dims == 2 else nn.AdaptiveAvgPool3d((1, 1, 1)), |
|
conv_nd(conf.dims, ch, conf.out_channels, 1), |
|
nn.Flatten(), |
|
) |
|
else: |
|
raise NotImplementedError(f"Unexpected {conf.pool} pooling") |
|
|
|
def forward(self, x, t=None, return_Nd_feature=False): |
|
""" |
|
Apply the model to an input batch. |
|
|
|
:param x: an [N x C x ...] Tensor of inputs. |
|
:param timesteps: a 1-D batch of timesteps. |
|
:return: an [N x K] Tensor of outputs. |
|
""" |
|
if self.conf.use_time_condition: |
|
emb = self.time_embed(timestep_embedding(t, self.model_channels)) |
|
else: |
|
emb = None |
|
|
|
results = [] |
|
h = x.type(self.dtype) |
|
for module in self.input_blocks: |
|
h = module(h, emb=emb) |
|
if self.conf.pool.startswith("spatial"): |
|
results.append(h.type(x.dtype).mean(dim=(2, 3) if self.conf.dims == 2 else (2, 3, 4))) |
|
h = self.middle_block(h, emb=emb) |
|
if self.conf.pool.startswith("spatial"): |
|
results.append(h.type(x.dtype).mean(dim=(2, 3) if self.conf.dims == 2 else (2, 3, 4))) |
|
h = th.cat(results, axis=-1) |
|
else: |
|
h = h.type(x.dtype) |
|
|
|
h_Nd = h |
|
h = self.out(h) |
|
|
|
if return_Nd_feature: |
|
return h, h_Nd |
|
else: |
|
return h |
|
|
|
def forward_flatten(self, x): |
|
""" |
|
transform the last Nd feature into a flatten vector |
|
""" |
|
h = self.out(x) |
|
return h |
|
|
|
|
|
class SuperResModel(BeatGANsUNetModel): |
|
""" |
|
A UNetModel that performs super-resolution. |
|
|
|
Expects an extra kwarg `low_res` to condition on a low-resolution image. |
|
""" |
|
def __init__(self, image_size, in_channels, *args, **kwargs): |
|
super().__init__(image_size, in_channels * 2, *args, **kwargs) |
|
|
|
def forward(self, x, timesteps, low_res=None, **kwargs): |
|
_, _, new_height, new_width = x.shape |
|
upsampled = F.interpolate(low_res, (new_height, new_width), |
|
mode="bilinear") |
|
x = th.cat([x, upsampled], dim=1) |
|
return super().forward(x, timesteps, **kwargs) |
|
|