|
from .DiffAE_diffusion_base import * |
|
from dataclasses import dataclass |
|
|
|
|
|
def space_timesteps(num_timesteps, section_counts): |
|
""" |
|
Create a list of timesteps to use from an original diffusion process, |
|
given the number of timesteps we want to take from equally-sized portions |
|
of the original process. |
|
|
|
For example, if there's 300 timesteps and the section counts are [10,15,20] |
|
then the first 100 timesteps are strided to be 10 timesteps, the second 100 |
|
are strided to be 15 timesteps, and the final 100 are strided to be 20. |
|
|
|
If the stride is a string starting with "ddim", then the fixed striding |
|
from the DDIM paper is used, and only one section is allowed. |
|
|
|
:param num_timesteps: the number of diffusion steps in the original |
|
process to divide up. |
|
:param section_counts: either a list of numbers, or a string containing |
|
comma-separated numbers, indicating the step count |
|
per section. As a special case, use "ddimN" where N |
|
is a number of steps to use the striding from the |
|
DDIM paper. |
|
:return: a set of diffusion steps from the original process to use. |
|
""" |
|
if isinstance(section_counts, str): |
|
if section_counts.startswith("ddim"): |
|
desired_count = int(section_counts[len("ddim"):]) |
|
for i in range(1, num_timesteps): |
|
if len(range(0, num_timesteps, i)) == desired_count: |
|
return set(range(0, num_timesteps, i)) |
|
raise ValueError( |
|
f"cannot create exactly {num_timesteps} steps with an integer stride" |
|
) |
|
section_counts = [int(x) for x in section_counts.split(",")] |
|
size_per = num_timesteps // len(section_counts) |
|
extra = num_timesteps % len(section_counts) |
|
start_idx = 0 |
|
all_steps = [] |
|
for i, section_count in enumerate(section_counts): |
|
size = size_per + (1 if i < extra else 0) |
|
if size < section_count: |
|
raise ValueError( |
|
f"cannot divide section of {size} steps into {section_count}") |
|
if section_count <= 1: |
|
frac_stride = 1 |
|
else: |
|
frac_stride = (size - 1) / (section_count - 1) |
|
cur_idx = 0.0 |
|
taken_steps = [] |
|
for _ in range(section_count): |
|
taken_steps.append(start_idx + round(cur_idx)) |
|
cur_idx += frac_stride |
|
all_steps += taken_steps |
|
start_idx += size |
|
return set(all_steps) |
|
|
|
|
|
@dataclass |
|
class SpacedDiffusionBeatGansConfig(GaussianDiffusionBeatGansConfig): |
|
use_timesteps: Tuple[int] = None |
|
|
|
def make_sampler(self): |
|
return SpacedDiffusionBeatGans(self) |
|
|
|
|
|
class SpacedDiffusionBeatGans(GaussianDiffusionBeatGans): |
|
""" |
|
A diffusion process which can skip steps in a base diffusion process. |
|
|
|
:param use_timesteps: a collection (sequence or set) of timesteps from the |
|
original diffusion process to retain. |
|
:param kwargs: the kwargs to create the base diffusion process. |
|
""" |
|
def __init__(self, conf: SpacedDiffusionBeatGansConfig): |
|
self.conf = conf |
|
self.use_timesteps = set(conf.use_timesteps) |
|
|
|
self.timestep_map = [] |
|
self.original_num_steps = len(conf.betas) |
|
|
|
base_diffusion = GaussianDiffusionBeatGans(conf) |
|
last_alpha_cumprod = 1.0 |
|
new_betas = [] |
|
for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod): |
|
if i in self.use_timesteps: |
|
|
|
new_betas.append(1 - alpha_cumprod / last_alpha_cumprod) |
|
last_alpha_cumprod = alpha_cumprod |
|
self.timestep_map.append(i) |
|
conf.betas = np.array(new_betas) |
|
super().__init__(conf) |
|
|
|
def p_mean_variance(self, model: Model, *args, **kwargs): |
|
return super().p_mean_variance(self._wrap_model(model), *args, |
|
**kwargs) |
|
|
|
def training_losses(self, model: Model, *args, **kwargs): |
|
return super().training_losses(self._wrap_model(model), *args, |
|
**kwargs) |
|
|
|
def condition_mean(self, cond_fn, *args, **kwargs): |
|
return super().condition_mean(self._wrap_model(cond_fn), *args, |
|
**kwargs) |
|
|
|
def condition_score(self, cond_fn, *args, **kwargs): |
|
return super().condition_score(self._wrap_model(cond_fn), *args, |
|
**kwargs) |
|
|
|
def _wrap_model(self, model: Model): |
|
if isinstance(model, _WrappedModel): |
|
return model |
|
return _WrappedModel(model, self.timestep_map, self.rescale_timesteps, |
|
self.original_num_steps) |
|
|
|
def _scale_timesteps(self, t): |
|
|
|
return t |
|
|
|
|
|
class _WrappedModel: |
|
""" |
|
converting the supplied t's to the old t's scales. |
|
""" |
|
def __init__(self, model, timestep_map, rescale_timesteps, |
|
original_num_steps): |
|
self.model = model |
|
self.timestep_map = timestep_map |
|
self.rescale_timesteps = rescale_timesteps |
|
self.original_num_steps = original_num_steps |
|
|
|
def forward(self, x, t, t_cond=None, **kwargs): |
|
""" |
|
Args: |
|
t: t's with differrent ranges (can be << T due to smaller eval T) need to be converted to the original t's |
|
t_cond: the same as t but can be of different values |
|
""" |
|
map_tensor = th.tensor(self.timestep_map, |
|
device=t.device, |
|
dtype=t.dtype) |
|
|
|
def do(t): |
|
new_ts = map_tensor[t] |
|
if self.rescale_timesteps: |
|
new_ts = new_ts.float() * (1000.0 / self.original_num_steps) |
|
return new_ts |
|
|
|
if t_cond is not None: |
|
|
|
t_cond = do(t_cond) |
|
|
|
return self.model(x=x, t=do(t), t_cond=t_cond, **kwargs) |
|
|
|
def __getattr__(self, name): |
|
|
|
if hasattr(self.model, name): |
|
func = getattr(self.model, name) |
|
return func |
|
raise AttributeError(name) |
|
|