""" Various utilities for neural networks. """ from enum import Enum import math from typing import Optional import torch as th import torch.nn as nn import torch.utils.checkpoint import torch.nn.functional as F # PyTorch 1.7 has SiLU, but we support PyTorch 1.5. class SiLU(nn.Module): # @th.jit.script def forward(self, x): return x * th.sigmoid(x) class GroupNorm32(nn.GroupNorm): def forward(self, x): return super().forward(x.float()).type(x.dtype) def conv_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D convolution module. """ if dims == 1: return nn.Conv1d(*args, **kwargs) elif dims == 2: return nn.Conv2d(*args, **kwargs) elif dims == 3: return nn.Conv3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") def linear(*args, **kwargs): """ Create a linear module. """ return nn.Linear(*args, **kwargs) def avg_pool_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D average pooling module. """ if dims == 1: return nn.AvgPool1d(*args, **kwargs) elif dims == 2: return nn.AvgPool2d(*args, **kwargs) elif dims == 3: return nn.AvgPool3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") def update_ema(target_params, source_params, rate=0.99): """ Update target parameters to be closer to those of source parameters using an exponential moving average. :param target_params: the target parameter sequence. :param source_params: the source parameter sequence. :param rate: the EMA rate (closer to 1 means slower). """ for targ, src in zip(target_params, source_params): targ.detach().mul_(rate).add_(src, alpha=1 - rate) def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module def scale_module(module, scale): """ Scale the parameters of a module and return it. """ for p in module.parameters(): p.detach().mul_(scale) return module def mean_flat(tensor): """ Take the mean over all non-batch dimensions. """ return tensor.mean(dim=list(range(1, len(tensor.shape)))) def normalization(channels, limit=32): """ Make a standard normalization layer. :param channels: number of input channels. :param limit: the maximum number of groups. It's required if the number of net_channel is too small. Default: 32 (Added by Soumick, default from original) :return: an nn.Module for normalization. """ return GroupNorm32(min(limit, channels), channels) def timestep_embedding(timesteps, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param timesteps: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an [N x dim] Tensor of positional embeddings. """ half = dim // 2 freqs = th.exp(-math.log(max_period) * th.arange(start=0, end=half, dtype=th.float32) / half).to(device=timesteps.device) args = timesteps[:, None].float() * freqs[None] embedding = th.cat([th.cos(args), th.sin(args)], dim=-1) if dim % 2: embedding = th.cat( [embedding, th.zeros_like(embedding[:, :1])], dim=-1) return embedding def torch_checkpoint(func, args, flag, preserve_rng_state=False): # torch's gradient checkpoint works with automatic mixed precision, given torch >= 1.8 if flag: return torch.utils.checkpoint.checkpoint( func, *args, preserve_rng_state=preserve_rng_state) else: return func(*args)