|
import math |
|
import numpy as np |
|
from abc import abstractmethod |
|
from dataclasses import dataclass |
|
from numbers import Number |
|
|
|
import torch as th |
|
import torch.nn.functional as F |
|
from .DiffAE_support_choices import * |
|
from .DiffAE_support_config_base import BaseConfig |
|
from torch import nn |
|
|
|
from .DiffAE_model_nn import (avg_pool_nd, conv_nd, linear, normalization, |
|
timestep_embedding, torch_checkpoint, zero_module) |
|
|
|
class ScaleAt(Enum): |
|
after_norm = 'afternorm' |
|
|
|
|
|
class TimestepBlock(nn.Module): |
|
""" |
|
Any module where forward() takes timestep embeddings as a second argument. |
|
""" |
|
@abstractmethod |
|
def forward(self, x, emb=None, cond=None, lateral=None): |
|
""" |
|
Apply the module to `x` given `emb` timestep embeddings. |
|
""" |
|
|
|
|
|
class TimestepEmbedSequential(nn.Sequential, TimestepBlock): |
|
""" |
|
A sequential module that passes timestep embeddings to the children that |
|
support it as an extra input. |
|
""" |
|
def forward(self, x, emb=None, cond=None, lateral=None): |
|
for layer in self: |
|
if isinstance(layer, TimestepBlock): |
|
x = layer(x, emb=emb, cond=cond, lateral=lateral) |
|
else: |
|
x = layer(x) |
|
return x |
|
|
|
|
|
@dataclass |
|
class ResBlockConfig(BaseConfig): |
|
channels: int |
|
emb_channels: int |
|
dropout: float |
|
out_channels: int = None |
|
|
|
use_condition: bool = True |
|
|
|
use_conv: bool = False |
|
group_norm_limit: int = 32 |
|
|
|
dims: int = 2 |
|
|
|
use_checkpoint: bool = False |
|
up: bool = False |
|
down: bool = False |
|
|
|
two_cond: bool = False |
|
|
|
cond_emb_channels: int = None |
|
|
|
has_lateral: bool = False |
|
lateral_channels: int = None |
|
|
|
|
|
use_zero_module: bool = True |
|
|
|
def __post_init__(self): |
|
self.out_channels = self.out_channels or self.channels |
|
self.cond_emb_channels = self.cond_emb_channels or self.emb_channels |
|
|
|
def make_model(self): |
|
return ResBlock(self) |
|
|
|
|
|
class ResBlock(TimestepBlock): |
|
""" |
|
A residual block that can optionally change the number of channels. |
|
|
|
total layers: |
|
in_layers |
|
- norm |
|
- act |
|
- conv |
|
out_layers |
|
- norm |
|
- (modulation) |
|
- act |
|
- conv |
|
""" |
|
def __init__(self, conf: ResBlockConfig): |
|
super().__init__() |
|
self.conf = conf |
|
|
|
|
|
|
|
|
|
assert conf.lateral_channels is None |
|
layers = [ |
|
normalization(conf.channels, limit=conf.group_norm_limit if "group_norm_limit" in conf.__dict__ else 32), |
|
nn.SiLU(), |
|
conv_nd(conf.dims, conf.channels, conf.out_channels, 3, padding=1) |
|
] |
|
self.in_layers = nn.Sequential(*layers) |
|
|
|
self.updown = conf.up or conf.down |
|
|
|
if conf.up: |
|
self.h_upd = Upsample(conf.channels, False, conf.dims) |
|
self.x_upd = Upsample(conf.channels, False, conf.dims) |
|
elif conf.down: |
|
self.h_upd = Downsample(conf.channels, False, conf.dims) |
|
self.x_upd = Downsample(conf.channels, False, conf.dims) |
|
else: |
|
self.h_upd = self.x_upd = nn.Identity() |
|
|
|
|
|
|
|
|
|
if conf.use_condition: |
|
|
|
self.emb_layers = nn.Sequential( |
|
nn.SiLU(), |
|
linear(conf.emb_channels, 2 * conf.out_channels), |
|
) |
|
|
|
if conf.two_cond: |
|
self.cond_emb_layers = nn.Sequential( |
|
nn.SiLU(), |
|
linear(conf.cond_emb_channels, conf.out_channels), |
|
) |
|
|
|
|
|
|
|
|
|
conv = conv_nd(conf.dims, |
|
conf.out_channels, |
|
conf.out_channels, |
|
3, |
|
padding=1) |
|
if conf.use_zero_module: |
|
|
|
|
|
conv = zero_module(conv) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
layers = [] |
|
layers += [ |
|
normalization(conf.out_channels, limit=conf.group_norm_limit if "group_norm_limit" in conf.__dict__ else 32), |
|
nn.SiLU(), |
|
nn.Dropout(p=conf.dropout), |
|
conv, |
|
] |
|
self.out_layers = nn.Sequential(*layers) |
|
|
|
|
|
|
|
|
|
if conf.out_channels == conf.channels: |
|
|
|
self.skip_connection = nn.Identity() |
|
else: |
|
if conf.use_conv: |
|
kernel_size = 3 |
|
padding = 1 |
|
else: |
|
kernel_size = 1 |
|
padding = 0 |
|
|
|
self.skip_connection = conv_nd(conf.dims, |
|
conf.channels, |
|
conf.out_channels, |
|
kernel_size, |
|
padding=padding) |
|
|
|
def forward(self, x, emb=None, cond=None, lateral=None): |
|
""" |
|
Apply the block to a Tensor, conditioned on a timestep embedding. |
|
|
|
Args: |
|
x: input |
|
lateral: lateral connection from the encoder |
|
""" |
|
return torch_checkpoint(self._forward, (x, emb, cond, lateral), |
|
self.conf.use_checkpoint) |
|
|
|
def _forward( |
|
self, |
|
x, |
|
emb=None, |
|
cond=None, |
|
lateral=None, |
|
): |
|
""" |
|
Args: |
|
lateral: required if "has_lateral" and non-gated, with gated, it can be supplied optionally |
|
""" |
|
if self.conf.has_lateral: |
|
|
|
|
|
assert lateral is not None |
|
x = th.cat([x, lateral], dim=1) |
|
|
|
if self.updown: |
|
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] |
|
h = in_rest(x) |
|
h = self.h_upd(h) |
|
x = self.x_upd(x) |
|
h = in_conv(h) |
|
else: |
|
h = self.in_layers(x) |
|
|
|
if self.conf.use_condition: |
|
|
|
|
|
if emb is not None: |
|
emb_out = self.emb_layers(emb).type(h.dtype) |
|
else: |
|
emb_out = None |
|
|
|
if self.conf.two_cond: |
|
|
|
|
|
|
|
|
|
if cond is None: |
|
cond_out = None |
|
else: |
|
cond_out = self.cond_emb_layers(cond).type(h.dtype) |
|
|
|
if cond_out is not None: |
|
while len(cond_out.shape) < len(h.shape): |
|
cond_out = cond_out[..., None] |
|
else: |
|
cond_out = None |
|
|
|
|
|
h = apply_conditions( |
|
h=h, |
|
emb=emb_out, |
|
cond=cond_out, |
|
layers=self.out_layers, |
|
scale_bias=1, |
|
in_channels=self.conf.out_channels, |
|
up_down_layer=None, |
|
) |
|
|
|
return self.skip_connection(x) + h |
|
|
|
|
|
def apply_conditions( |
|
h, |
|
emb=None, |
|
cond=None, |
|
layers: nn.Sequential = None, |
|
scale_bias: float = 1, |
|
in_channels: int = 512, |
|
up_down_layer: nn.Module = None, |
|
): |
|
""" |
|
apply conditions on the feature maps |
|
|
|
Args: |
|
emb: time conditional (ready to scale + shift) |
|
cond: encoder's conditional (read to scale + shift) |
|
""" |
|
two_cond = emb is not None and cond is not None |
|
|
|
if emb is not None: |
|
|
|
while len(emb.shape) < len(h.shape): |
|
emb = emb[..., None] |
|
|
|
if two_cond: |
|
|
|
while len(cond.shape) < len(h.shape): |
|
cond = cond[..., None] |
|
|
|
scale_shifts = [emb, cond] |
|
else: |
|
|
|
scale_shifts = [emb] |
|
|
|
|
|
for i, each in enumerate(scale_shifts): |
|
if each is None: |
|
|
|
a = None |
|
b = None |
|
else: |
|
if each.shape[1] == in_channels * 2: |
|
a, b = th.chunk(each, 2, dim=1) |
|
else: |
|
a = each |
|
b = None |
|
scale_shifts[i] = (a, b) |
|
|
|
|
|
if isinstance(scale_bias, Number): |
|
biases = [scale_bias] * len(scale_shifts) |
|
else: |
|
|
|
biases = scale_bias |
|
|
|
|
|
pre_layers, post_layers = layers[0], layers[1:] |
|
|
|
|
|
|
|
mid_layers, post_layers = post_layers[:-2], post_layers[-2:] |
|
|
|
h = pre_layers(h) |
|
|
|
for i, (scale, shift) in enumerate(scale_shifts): |
|
|
|
if scale is not None: |
|
h = h * (biases[i] + scale) |
|
if shift is not None: |
|
h = h + shift |
|
h = mid_layers(h) |
|
|
|
|
|
if up_down_layer is not None: |
|
h = up_down_layer(h) |
|
h = post_layers(h) |
|
return h |
|
|
|
|
|
class Upsample(nn.Module): |
|
""" |
|
An upsampling layer with an optional convolution. |
|
|
|
:param channels: channels in the inputs and outputs. |
|
:param use_conv: a bool determining if a convolution is applied. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then |
|
upsampling occurs in the inner-two dimensions. |
|
""" |
|
def __init__(self, channels, use_conv, dims=2, out_channels=None): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.dims = dims |
|
if use_conv: |
|
self.conv = conv_nd(dims, |
|
self.channels, |
|
self.out_channels, |
|
3, |
|
padding=1) |
|
|
|
def forward(self, x): |
|
assert x.shape[1] == self.channels |
|
if self.dims == 3: |
|
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), |
|
mode="nearest") |
|
else: |
|
x = F.interpolate(x, scale_factor=2, mode="nearest") |
|
if self.use_conv: |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Downsample(nn.Module): |
|
""" |
|
A downsampling layer with an optional convolution. |
|
|
|
:param channels: channels in the inputs and outputs. |
|
:param use_conv: a bool determining if a convolution is applied. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then |
|
downsampling occurs in the inner-two dimensions. |
|
""" |
|
def __init__(self, channels, use_conv, dims=2, out_channels=None): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.dims = dims |
|
stride = 2 if dims != 3 else (1, 2, 2) |
|
if use_conv: |
|
self.op = conv_nd(dims, |
|
self.channels, |
|
self.out_channels, |
|
3, |
|
stride=stride, |
|
padding=1) |
|
else: |
|
assert self.channels == self.out_channels |
|
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) |
|
|
|
def forward(self, x): |
|
assert x.shape[1] == self.channels |
|
return self.op(x) |
|
|
|
|
|
class AttentionBlock(nn.Module): |
|
""" |
|
An attention block that allows spatial positions to attend to each other. |
|
|
|
Originally ported from here, but adapted to the N-d case. |
|
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. |
|
""" |
|
def __init__( |
|
self, |
|
channels, |
|
num_heads=1, |
|
num_head_channels=-1, |
|
group_norm_limit=32, |
|
use_checkpoint=False, |
|
use_new_attention_order=False, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
if num_head_channels == -1: |
|
self.num_heads = num_heads |
|
else: |
|
assert ( |
|
channels % num_head_channels == 0 |
|
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" |
|
self.num_heads = channels // num_head_channels |
|
self.use_checkpoint = use_checkpoint |
|
self.norm = normalization(channels, limit=group_norm_limit) |
|
self.qkv = conv_nd(1, channels, channels * 3, 1) |
|
if use_new_attention_order: |
|
|
|
self.attention = QKVAttention(self.num_heads) |
|
else: |
|
|
|
self.attention = QKVAttentionLegacy(self.num_heads) |
|
|
|
self.proj_out = zero_module(conv_nd(1, channels, channels, 1)) |
|
|
|
def forward(self, x): |
|
return torch_checkpoint(self._forward, (x, ), self.use_checkpoint) |
|
|
|
def _forward(self, x): |
|
b, c, *spatial = x.shape |
|
x = x.reshape(b, c, -1) |
|
qkv = self.qkv(self.norm(x)) |
|
h = self.attention(qkv) |
|
h = self.proj_out(h) |
|
return (x + h).reshape(b, c, *spatial) |
|
|
|
|
|
def count_flops_attn(model, _x, y): |
|
""" |
|
A counter for the `thop` package to count the operations in an |
|
attention operation. |
|
Meant to be used like: |
|
macs, params = thop.profile( |
|
model, |
|
inputs=(inputs, timestamps), |
|
custom_ops={QKVAttention: QKVAttention.count_flops}, |
|
) |
|
""" |
|
b, c, *spatial = y[0].shape |
|
num_spatial = int(np.prod(spatial)) |
|
|
|
|
|
|
|
matmul_ops = 2 * b * (num_spatial**2) * c |
|
model.total_ops += th.DoubleTensor([matmul_ops]) |
|
|
|
|
|
class QKVAttentionLegacy(nn.Module): |
|
""" |
|
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping |
|
""" |
|
def __init__(self, n_heads): |
|
super().__init__() |
|
self.n_heads = n_heads |
|
|
|
def forward(self, qkv): |
|
""" |
|
Apply QKV attention. |
|
|
|
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. |
|
:return: an [N x (H * C) x T] tensor after attention. |
|
""" |
|
bs, width, length = qkv.shape |
|
assert width % (3 * self.n_heads) == 0 |
|
ch = width // (3 * self.n_heads) |
|
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, |
|
dim=1) |
|
scale = 1 / math.sqrt(math.sqrt(ch)) |
|
weight = th.einsum( |
|
"bct,bcs->bts", q * scale, |
|
k * scale) |
|
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) |
|
a = th.einsum("bts,bcs->bct", weight, v) |
|
return a.reshape(bs, -1, length) |
|
|
|
@staticmethod |
|
def count_flops(model, _x, y): |
|
return count_flops_attn(model, _x, y) |
|
|
|
|
|
class QKVAttention(nn.Module): |
|
""" |
|
A module which performs QKV attention and splits in a different order. |
|
""" |
|
def __init__(self, n_heads): |
|
super().__init__() |
|
self.n_heads = n_heads |
|
|
|
def forward(self, qkv): |
|
""" |
|
Apply QKV attention. |
|
|
|
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. |
|
:return: an [N x (H * C) x T] tensor after attention. |
|
""" |
|
bs, width, length = qkv.shape |
|
assert width % (3 * self.n_heads) == 0 |
|
ch = width // (3 * self.n_heads) |
|
q, k, v = qkv.chunk(3, dim=1) |
|
scale = 1 / math.sqrt(math.sqrt(ch)) |
|
weight = th.einsum( |
|
"bct,bcs->bts", |
|
(q * scale).view(bs * self.n_heads, ch, length), |
|
(k * scale).view(bs * self.n_heads, ch, length), |
|
) |
|
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) |
|
a = th.einsum("bts,bcs->bct", weight, |
|
v.reshape(bs * self.n_heads, ch, length)) |
|
return a.reshape(bs, -1, length) |
|
|
|
@staticmethod |
|
def count_flops(model, _x, y): |
|
return count_flops_attn(model, _x, y) |
|
|
|
|
|
class AttentionPool2d(nn.Module): |
|
""" |
|
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py |
|
""" |
|
def __init__( |
|
self, |
|
spacial_dim: int, |
|
embed_dim: int, |
|
num_heads_channels: int, |
|
output_dim: int = None, |
|
): |
|
super().__init__() |
|
self.positional_embedding = nn.Parameter( |
|
th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5) |
|
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1) |
|
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1) |
|
self.num_heads = embed_dim // num_heads_channels |
|
self.attention = QKVAttention(self.num_heads) |
|
|
|
def forward(self, x): |
|
b, c, *_spatial = x.shape |
|
x = x.reshape(b, c, -1) |
|
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) |
|
x = x + self.positional_embedding[None, :, :].to(x.dtype) |
|
x = self.qkv_proj(x) |
|
x = self.attention(x) |
|
x = self.c_proj(x) |
|
return x[:, :, 0] |
|
|