|
""" |
|
Various utilities for neural networks. |
|
""" |
|
|
|
from enum import Enum |
|
import math |
|
from typing import Optional |
|
|
|
import torch as th |
|
import torch.nn as nn |
|
import torch.utils.checkpoint |
|
|
|
import torch.nn.functional as F |
|
|
|
|
|
|
|
class SiLU(nn.Module): |
|
|
|
def forward(self, x): |
|
return x * th.sigmoid(x) |
|
|
|
|
|
class GroupNorm32(nn.GroupNorm): |
|
def forward(self, x): |
|
return super().forward(x.float()).type(x.dtype) |
|
|
|
|
|
def conv_nd(dims, *args, **kwargs): |
|
""" |
|
Create a 1D, 2D, or 3D convolution module. |
|
""" |
|
if dims == 1: |
|
return nn.Conv1d(*args, **kwargs) |
|
elif dims == 2: |
|
return nn.Conv2d(*args, **kwargs) |
|
elif dims == 3: |
|
return nn.Conv3d(*args, **kwargs) |
|
raise ValueError(f"unsupported dimensions: {dims}") |
|
|
|
|
|
def linear(*args, **kwargs): |
|
""" |
|
Create a linear module. |
|
""" |
|
return nn.Linear(*args, **kwargs) |
|
|
|
|
|
def avg_pool_nd(dims, *args, **kwargs): |
|
""" |
|
Create a 1D, 2D, or 3D average pooling module. |
|
""" |
|
if dims == 1: |
|
return nn.AvgPool1d(*args, **kwargs) |
|
elif dims == 2: |
|
return nn.AvgPool2d(*args, **kwargs) |
|
elif dims == 3: |
|
return nn.AvgPool3d(*args, **kwargs) |
|
raise ValueError(f"unsupported dimensions: {dims}") |
|
|
|
|
|
def update_ema(target_params, source_params, rate=0.99): |
|
""" |
|
Update target parameters to be closer to those of source parameters using |
|
an exponential moving average. |
|
|
|
:param target_params: the target parameter sequence. |
|
:param source_params: the source parameter sequence. |
|
:param rate: the EMA rate (closer to 1 means slower). |
|
""" |
|
for targ, src in zip(target_params, source_params): |
|
targ.detach().mul_(rate).add_(src, alpha=1 - rate) |
|
|
|
|
|
def zero_module(module): |
|
""" |
|
Zero out the parameters of a module and return it. |
|
""" |
|
for p in module.parameters(): |
|
p.detach().zero_() |
|
return module |
|
|
|
|
|
def scale_module(module, scale): |
|
""" |
|
Scale the parameters of a module and return it. |
|
""" |
|
for p in module.parameters(): |
|
p.detach().mul_(scale) |
|
return module |
|
|
|
|
|
def mean_flat(tensor): |
|
""" |
|
Take the mean over all non-batch dimensions. |
|
""" |
|
return tensor.mean(dim=list(range(1, len(tensor.shape)))) |
|
|
|
|
|
def normalization(channels, limit=32): |
|
""" |
|
Make a standard normalization layer. |
|
|
|
:param channels: number of input channels. |
|
:param limit: the maximum number of groups. It's required if the number of net_channel is too small. Default: 32 (Added by Soumick, default from original) |
|
:return: an nn.Module for normalization. |
|
""" |
|
return GroupNorm32(min(limit, channels), channels) |
|
|
|
|
|
def timestep_embedding(timesteps, dim, max_period=10000): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
|
|
:param timesteps: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an [N x dim] Tensor of positional embeddings. |
|
""" |
|
half = dim // 2 |
|
freqs = th.exp(-math.log(max_period) * |
|
th.arange(start=0, end=half, dtype=th.float32) / |
|
half).to(device=timesteps.device) |
|
args = timesteps[:, None].float() * freqs[None] |
|
embedding = th.cat([th.cos(args), th.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = th.cat( |
|
[embedding, th.zeros_like(embedding[:, :1])], dim=-1) |
|
return embedding |
|
|
|
|
|
def torch_checkpoint(func, args, flag, preserve_rng_state=False): |
|
|
|
if flag: |
|
return torch.utils.checkpoint.checkpoint( |
|
func, *args, preserve_rng_state=preserve_rng_state) |
|
else: |
|
return func(*args) |
|
|